Math, asked by tpbelnas07, 1 year ago

Determine between which consecutive integers the real zeros of each function are located on the given interval.
5. f(x) = x^3 + 5x^2 – 4; [–6, 2]

Answers

Answered by ankursinghtomar2606
4

when we take out roots of the following equation we are getting

x belongs from (-5 - √73)/6 to (-5 + √73)/6

Value of the equation will become 0 only on thesw values of x

these roots are real but they are not integer = Ans = 0 (or null value m not sure)

Answered by amitnrw
1

Given :  f(x) = x³  + 5x²  - 4

To find : Determine between which   integers the real zeros of each function are located on the given interval

Solution:

f(x) = x³  + 5x²  - 4

f(-1) = - 1 + 5 - 4 = 0

-1 is one the zero

=> x + 1 is one of the factor

-1 lies between  [–6, 2]

             x² + 4x  - 4

x + 1  _|  x³  + 5x²  - 4  |_

             x³   + x²

            ______

                    4x²     - 4

                    4x²  + 4x

                _________

                          -4x - 4

                          -4x  - 4

                          ______

                                0

x³  + 5x²  - 4 = (x + 1)(x² + 4x  - 4)

x² + 4x  - 4  

x  =  (- 4  ± √16 + 16)/2

=   -2 ± 2√2

= - 2 ± 2.83

= 0.83  ,  - 4.83

Zeroes are

- 4.83 , - 1, 0.83

=> these lies between integers  - 5  & 1   which are with in  [–6, 2]

real zeros of   function x³  + 5x²  - 4 are located between  integers  - 5  & 1

Learn more:

find real zeros of the polynomial x^3-1 - Brainly.in

https://brainly.in/question/7977009

Let f(x)=x2+ax+b. if for all non zero real xf(x+1/x)=f(x)+f(1/x)

https://brainly.in/question/11776274

Similar questions