Math, asked by rahulgond3438, 9 months ago

Determine critical points of f(x) =8x³ + 81x²-42x-8

Answers

Answered by hukam0685
2

Step-by-step explanation:

Given:f(x) =8x³ + 81x²-42x-8

To find: Determine critical points of f(x)

Solution:

Step 1: Differentiate f(x)

f'(x) = 24 {x}^{2}  + 162x - 42 \\

Step 2: Put f'(x)=0,and find the values of x

24 {x}^{2}  + 162x - 42 = 0 \\

or

12 {x}^{2}  + 81x - 21 = 0 \\  \\

apply quadratic formula

x =  \frac{ - 81 ±  \sqrt{6561  + 1008} }{24}  \\  \\ x =  \frac{ - 81 ± \sqrt{ 7569} }{24}  \\  \\ x =  \frac{ - 81 ± 87}{24}  \\  \\ x =  \frac{1}{4}  \\  \\ x =  - 7 \\  \\

Step 3: Find f"(x)

48x + 162 \\

Step 4: Put values of x in f"(x)

48 \times  \frac{1}{4}  + 162 \\  \\ 21 + 162 \\  \\ 183 > 0 \\

At x=1/4, minima is present.

Check for -7

48( - 7) + 162 \\  - 336 + 162 \\  - 174 < 0 \\

at x=-7,there is a maxima.

Final answer:

Critical values of f(x) are x=1/4 and x= -7.

Hope it helps you.

To learn more on brainly:

q.25

help me with this question

https://brainly.in/question/46114636

If A =[ 1 -1

2 3]

and C = [ 2 3

1 -11]

find matrix B such that BA = C

https://brainly.in/question/39079385

Answered by HarshitJaiswal2534
1

Step-by-step explanation:

Step-by-step explanation:

Given:f(x) =8x³ + 81x²-42x-8

To find: Determine critical points of f(x)

Solution:

Step 1: Differentiate f(x)

f'(x) = 24 {x}^{2}  + 162x - 42 \\

Step 2: Put f'(x)=0,and find the values of x

24 {x}^{2}  + 162x - 42 = 0 \\

or

12 {x}^{2}  + 81x - 21 = 0 \\  \\

apply quadratic formula

x =  \frac{ - 81 ±  \sqrt{6561  + 1008} }{24}  \\  \\ x =  \frac{ - 81 ± \sqrt{ 7569} }{24}  \\  \\ x =  \frac{ - 81 ± 87}{24}  \\  \\ x =  \frac{1}{4}  \\  \\ x =  - 7 \\  \\

Step 3: Find f"(x)

48x + 162 \\

Step 4: Put values of x in f"(x)

48 \times  \frac{1}{4}  + 162 \\  \\ 21 + 162 \\  \\ 183 > 0 \\

At x=1/4, minima is present.

Check for -7

48( - 7) + 162 \\  - 336 + 162 \\  - 174 < 0 \\

at x=-7,there is a maxima.

Final answer:

Critical values of f(x) are x=1/4 and x= -7.

Hope it helps you.

Similar questions