determine energy and wave length of radiation having frequency 1.5×10 -5 Hz
Answers
Given :
- Frequency of a radiation = 1.5 × 10⁻⁵ Hz
To Find :
- The energy and wavelength of the radiation
Solution :
The relation between Wavelength and frequency of a radiation is given by ,
Where ,
- c is velocity of light
- λ is wavelength
We have ,
- c = 3 × 10⁸ m/s
- υ = 1.5 × 10⁻⁵ Hz = 1.5 × 10⁻⁵ s⁻¹
Substituting the values in the formulae ,
⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━
The Energy of a radiation is given by ,
Where ,
- h is planck's constant (6.625 × 10⁻³⁴ J.s)
- υ is Frequency
We have ,
- h = 6.625 × 10⁻³⁴ J.s
- υ = 1.5 × 10⁻⁵ Hz = 1.5 × 10⁻⁵ s⁻¹
Substituting the values ,
Hence ,
- The Energy and wavelength of the given radiation are 9.93 × 10⁻³⁹ J and 2 × 10¹³ m
Answer:
Given :
Frequency of a radiation = 1.5 × 10⁻⁵ Hz
To Find :
The energy and wavelength of the radiation
Solution :
The relation between Wavelength and frequency of a radiation is given by ,
\begin{gathered} \\ \star \: {\boxed{\sf{\purple{ \upsilon = \dfrac{c}{ \lambda} }}}}\end{gathered}
⋆
υ=
λ
c
Where ,
c is velocity of light
λ is wavelength
We have ,
c = 3 × 10⁸ m/s
υ = 1.5 × 10⁻⁵ Hz = 1.5 × 10⁻⁵ s⁻¹
Substituting the values in the formulae ,
\begin{gathered} \\ : \implies \sf 1.5 \times {10}^{ - 5} {s}^{ - 1} = \dfrac{3 \times {10}^{8} \: m {s}^{ - 1} }{ \lambda} \\ \\ \end{gathered}
:⟹1.5×10
−5
s
−1
=
λ
3×10
8
ms
−1
\begin{gathered} \\ : \implies \sf \lambda \times 1.5 \times {10}^{ - 5} \: {s}^{ - 1} = 3 \times {10}^{8} \: m {s}^{ - 1} \\ \\ \end{gathered}
:⟹λ×1.5×10
−5
s
−1
=3×10
8
ms
−1
\begin{gathered} \\ : \implies \sf \lambda = \dfrac{3 \times {10}^{8} \: m {s}^{ - 1} }{ 1.5 \times {10}^{ - 5} \: s {}^{ - 1} } \\ \\ \end{gathered}
:⟹λ=
1.5×10
−5
s
−1
3×10
8
ms
−1
\begin{gathered} \\ : \implies \sf \lambda = 2 \times {10}^{8 + 5} \: m \\ \\ \end{gathered}
:⟹λ=2×10
8+5
m
\begin{gathered} \\ : \implies{\underline{\boxed{\pink{\mathfrak {\lambda =2 \times {10}^{13} \: m }}}}} \: \bigstar \\ \\ \end{gathered}
:⟹
λ=2×10
13
m
★
⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━
The Energy of a radiation is given by ,
\begin{gathered} \\ \star \: {\boxed{\purple{\sf{E = h \upsilon}}}}\end{gathered}
⋆
E=hυ
Where ,
h is planck's constant (6.625 × 10⁻³⁴ J.s)
υ is Frequency
We have ,
h = 6.625 × 10⁻³⁴ J.s
υ = 1.5 × 10⁻⁵ Hz = 1.5 × 10⁻⁵ s⁻¹
Substituting the values ,
\begin{gathered} \\ : \implies \sf \: E = (6.625 \times {10}^{ - 34} \: j.s)(1.5 \times {10}^{ - 5} \: {s}^{ - 1} ) \\ \\ \end{gathered}
:⟹E=(6.625×10
−34
j.s)(1.5×10
−5
s
−1
)
\begin{gathered} \\ : \implies{\underline{\boxed{\pink{\mathfrak{E = 9.93 \times {10}^{ - 39} \: J}}}}}\:\bigstar\\ \\\end{gathered}
:⟹
E=9.93×10
−39
J
★
Hence ,
The Energy and wavelength of the given radiation are 9.93 × 10⁻³⁹ J and 2 × 10¹³ m