Math, asked by emmanuelnkansah34, 11 months ago

Determine f (t) = {4sin (2t) − 6e4t}.

Answers

Answered by Swarup1998
0

Laplace Transformation

Question. Find \mathcal{L}\{\mathrm{F(t)\}}, where

\quad\quad \mathrm{F(t)=4\:sin2t-6\:e^{4t}}.

Formulae.

\quad\quad \mathcal{L}\mathrm{(e^{at})=\frac{1}{s-a},\:s>a}

\quad\quad \mathcal{L}\mathrm{(sinat)=\frac{a}{s^{2}+a^{2}}}

Solution.

Now, \mathcal{L}\mathrm{\{F(t)\}}

\quad=\mathcal{L}\mathrm{(4\:sin2t-6\:e^{4t})}

\quad=\mathcal{L}\mathrm{(4\:sin2t)}-\mathcal{L}\mathrm{(6\:e^{4t})}

\quad\mathrm{=4}\mathcal{L}\mathrm{(sin2t)-6}\mathcal{L}\mathrm{(e^{4t})}

\quad\mathrm{=4.\frac{2}{s^{2}+2^{2}}-6.\frac{1}{s-4}}

\quad\mathrm{=\frac{8}{s^{2}+4}-\frac{6}{s-4}}

\Rightarrow \boxed{\color{red}{\mathcal{L}\mathrm{(4\:sin2t-6\:e^{4t})=\frac{8}{s^{2}+4}-\frac{6}{s-4}}}}

This is the required Laplace transform.

Definition.

Let \color{blue}{\mathrm{F(t)}} be a transform of real variable \color{blue}{\mathrm{t}} defined in \color{blue}{\mathrm{(-\infty,\:\infty)}} such that \color{blue}{\mathrm{F(t)=0}} for all \color{blue}{\mathrm{t<0}}. The Laplace transform of \color{blue}{\mathrm{F(t)}} is denoted by \color{blue}{\mathcal{L}\mathrm{\{F(t)\}=f(s)}} or \color{blue}{\mathrm{f(p)}} defined by

\quad \color{blue}{\mathrm{f(s)=}\mathcal{L}\mathrm{\{F(t)\}=\int_{0}^{\infty}e^{-st}F(t)dt}},

provided the improper or the infinite integral exists.

The parameter \color{blue}{\mathrm{s}} or \color{blue}{\mathrm{p}} may be real or complex.

Similar questions