determine if (3,7),(4,5) and (2,11) are collinear or not
Answers
Answer:
Question :-
determine the points (1,5),(2,3) and (-2,11) are collinear.
Formula used :-
For collinearity of three points ,
\: \boxed{ 0 = \small \frac{1}{2} \big( \: x_1(y_2 - y_3) + x_2(y_3 - y_1) +x_3(y_1 - y_2) \big)}
0=
2
1
(x
1
(y
2
−y
3
)+x
2
(y
3
−y
1
)+x
3
(y
1
−y
2
))
_______________________________
Solution :-
Given that :-
Given points are ( 1,5) , (2,3) and (-2,11)
\begin{gathered}let \\ x_1 = 1 ,\: y_1 = 5 \\ \\ x_2 = 2 \: , \: y_2 = 3 \\ \\ x_3 = - 2 \: , \: y_3 = 11\end{gathered}
let
x
1
=1,y
1
=5
x
2
=2,y
2
=3
x
3
=−2,y
3
=11
Now using the given formula ,
\begin{gathered}\small \: 0 = \frac{1}{2} \big(1(3 - 11) + 2(11 - 5) - 2(5 - 3) \big) \\ \\ \implies \: 0 = \frac{1}{2} \big( - 8 + 12 - 4) \\ \\ \implies \: 0 = \frac{1}{2} ( - 12 + 12) \\ \\ \implies \: \boxed{0 = 0}\end{gathered}
0=
2
1
(1(3−11)+2(11−5)−2(5−3))
⟹0=
2
1
(−8+12−4)
⟹0=
2
1
(−12+12)
⟹
0=0
Hence proved,
The given points are collinear.