CBSE BOARD X, asked by Vandanachaurasia, 11 months ago

determine if the points (1,5),(2,3) and (-2,11) are collinear.​

Answers

Answered by Sharad001
153

Question :-

determine the points (1,5),(2,3) and (-2,11) are collinear.

Formula used :-

For collinearity of three points ,

 \: \boxed{  0 =  \small  \frac{1}{2}  \big( \: x_1(y_2 - y_3) + x_2(y_3 - y_1) +x_3(y_1 - y_2) \big)}

_______________________________

Solution :-

Given that :-

Given points are ( 1,5) , (2,3) and (-2,11)

let \\ x_1 = 1 ,\: y_1 = 5 \\  \\ x_2 = 2 \: , \: y_2 = 3 \\  \\ x_3 =  - 2 \: , \: y_3 = 11

Now using the given formula ,

 \small \: 0 =  \frac{1}{2}  \big(1(3 - 11) + 2(11 - 5)  - 2(5 - 3) \big) \\  \\  \implies \: 0 =  \frac{1}{2}  \big( - 8 + 12 - 4) \\  \\ \implies \:  0 =  \frac{1}{2} ( - 12 + 12) \\  \\  \implies \:  \boxed{0 = 0}

Hence proved,

The given points are collinear.

_________________________________

Answered by xXTheLegendXx
3

Answer:

Question :-

determine the points (1,5),(2,3) and (-2,11) are collinear.

Formula used :-

For collinearity of three points ,

 \: \boxed{  0 =  \small  \frac{1}{2}  \big( \: x_1(y_2 - y_3) + x_2(y_3 - y_1) +x_3(y_1 - y_2) \big)}

_______________________________

Solution :-

Given that :-

Given points are ( 1,5) , (2,3) and (-2,11)

let \\ x_1 = 1 ,\: y_1 = 5 \\  \\ x_2 = 2 \: , \: y_2 = 3 \\  \\ x_3 =  - 2 \: , \: y_3 = 11

Now using the given formula ,

 \small \: 0 =  \frac{1}{2}  \big(1(3 - 11) + 2(11 - 5)  - 2(5 - 3) \big) \\  \\  \implies \: 0 =  \frac{1}{2}  \big( - 8 + 12 - 4) \\  \\ \implies \:  0 =  \frac{1}{2} ( - 12 + 12) \\  \\  \implies \:  \boxed{0 = 0}

Hence proved,

The given points are collinear.

_________________________________

Similar questions