Math, asked by pramod22, 1 year ago

determine if the points (1,5),(2,3) and (-2,-11)are collinear

Answers

Answered by Anonymous
260

\bf\huge\boxed{\boxed{\bf\huge\:Hello\:Mate}}}



\bf\huge Let A(1 , 5) , \: B(2 , 3) , \: C(-2 , -11)




\bf\huge AB= \sqrt{(2 - 1)^2 + (3 - 5)^2}




\bf\huge = \sqrt{1^2 + (-2)^2}




\bf\huge = \sqrt{1 + 4} = \sqrt{5}




\bf\huge BC = \sqrt{(-2 - 2)^2 + (-11 - 3)^2}




\bf\huge BC = \sqrt{(-4)^2 + (-14)^2}




\bf\huge BC = \sqrt{16 + 196}




\bf\huge BC = \sqrt{212}




\bf\huge AB = \sqrt{4\times 53} = 2\sqrt{53}




\bf\huge AC = \sqrt{(-2 - 1)^2 + ( - 11 - 5)^2}





\bf\huge AC = \sqrt{(-3)^2 + (- 16)^2}




\bf\huge AC = \sqrt{9 + 256} = \sqrt{265}





\bf\huge Hence \:A , B\: and \:C\: are\: not\: collinear





\bf\huge\boxed{\boxed{\:Regards=\:Yash\:Raj}}}



Answered by New57
133

Answer:

Step-by-step explanation:

As we have to assume that the points are collinear so the area of the triangle will be zero.

Then we can apply the formula to find the area of the triangle is equals to zero

Attachments:
Similar questions