Determine k, so that ksquare+4k+8, 2ksquare+3k+6 and 3ksquare+4k+4 are three consecutive terms of AP
Answers
Answered by
22
Given a1 = k^2 + 4k + 8.
a2 = 2k^2 + 3k + 6
a3 = 3k^2 + 4k + 4.
a2 - a1 = a3 - a2
2k^2 + 3k + 6 - (k^2 + 4k + 8) = (3k^2 + 4k + 4) - (2k^2 + 3k + 6)
2k^2 + 3k + 6 - k^2 - 4k - 8 = 3k^2 + 4k + 4 - 2k^2 - 3k - 6
k^2 - k - 2 = k^2 + k - 2
-k = k
-2k = 0
k = 0.
Hope this helps!
a2 = 2k^2 + 3k + 6
a3 = 3k^2 + 4k + 4.
a2 - a1 = a3 - a2
2k^2 + 3k + 6 - (k^2 + 4k + 8) = (3k^2 + 4k + 4) - (2k^2 + 3k + 6)
2k^2 + 3k + 6 - k^2 - 4k - 8 = 3k^2 + 4k + 4 - 2k^2 - 3k - 6
k^2 - k - 2 = k^2 + k - 2
-k = k
-2k = 0
k = 0.
Hope this helps!
Answered by
16
Answer
...........
The given is ******. a1 = k^2 + 4k + 8.
******* a2 = 2k^2 + 3k + 6
******* a3 = 3k^2 + 4k + 4.
#################
a2 - a1
= a3 - a2
_________________
2k^2 + 3k + 6 - (k^2 + 4k + 8)
= (3k^2 + 4k + 4) - (2k^2 + 3k + 6)
2k^2 + 3k + 6 - k^2 - 4k - 8
3k^2 + 4k + 4 - 2k^2 - 3k - 6
k^2 - k - 2 = k^2 + k - 2
( -k = k )
-2k = 0
k = 0.
...........
The given is ******. a1 = k^2 + 4k + 8.
******* a2 = 2k^2 + 3k + 6
******* a3 = 3k^2 + 4k + 4.
#################
a2 - a1
= a3 - a2
_________________
2k^2 + 3k + 6 - (k^2 + 4k + 8)
= (3k^2 + 4k + 4) - (2k^2 + 3k + 6)
2k^2 + 3k + 6 - k^2 - 4k - 8
3k^2 + 4k + 4 - 2k^2 - 3k - 6
k^2 - k - 2 = k^2 + k - 2
( -k = k )
-2k = 0
k = 0.
Similar questions