Math, asked by suraj7986sharma, 6 hours ago

Determine k such that the quadratic equation
  {x}^{2} + 7(3 + 2k) – 2x (1 + 3k) = 0
has equal roots. ​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {x}^{2} - 2x(1 + 3k) + 7(3 + 2k) = 0

On comparing with ax² + bx + c = 0, we have

\red{\rm :\longmapsto\:a = 1}

\red{\rm :\longmapsto\:b =  - 2(1 + 3k)}

\red{\rm :\longmapsto\:c =  7(3 + 2k)}

We know,

Quadratic equation ax² + bx + c = 0, have real and equal roots iff Discriminant, D = 0.

\rm :\longmapsto\: {b}^{2} - 4ac = 0

\rm :\longmapsto\: {\bigg[ - 2(1 + 3k)\bigg]}^{2} - 4(1)[7(3 + 2k] = 0

\rm :\longmapsto\:4 {(1 + 3k)}^{2} - 28(3 + 2k) = 0

\rm :\longmapsto\:4 \bigg[{(1 + 3k)}^{2} - 7(3 + 2k)\bigg] = 0

\rm :\longmapsto\:{(1 + 3k)}^{2} - 7(3 + 2k) = 0

\rm :\longmapsto\:1 +  {9k}^{2} + 6k - 21 - 14k = 0

\rm :\longmapsto\:{9k}^{2} - 8k - 20  = 0

\rm :\longmapsto\:{9k}^{2} - 18k + 10k - 20  = 0

\rm :\longmapsto\:9k(k - 2) + 10(k - 2) = 0

\rm :\longmapsto\:(k - 2)(9k+ 10) = 0

\purple{\rm \implies\:\boxed{\tt{ k = 2 \:  \:  \: or \:  \:  \: k =  - \dfrac{10}{9} }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Concept Used :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by EmperorSoul
10

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {x}^{2} - 2x(1 + 3k) + 7(3 + 2k) = 0

On comparing with ax² + bx + c = 0, we have

\red{\rm :\longmapsto\:a = 1}

\red{\rm :\longmapsto\:b =  - 2(1 + 3k)}

\red{\rm :\longmapsto\:c =  7(3 + 2k)}

We know,

Quadratic equation ax² + bx + c = 0, have real and equal roots iff Discriminant, D = 0.

\rm :\longmapsto\: {b}^{2} - 4ac = 0

\rm :\longmapsto\: {\bigg[ - 2(1 + 3k)\bigg]}^{2} - 4(1)[7(3 + 2k] = 0

\rm :\longmapsto\:4 {(1 + 3k)}^{2} - 28(3 + 2k) = 0

\rm :\longmapsto\:4 \bigg[{(1 + 3k)}^{2} - 7(3 + 2k)\bigg] = 0

\rm :\longmapsto\:{(1 + 3k)}^{2} - 7(3 + 2k) = 0

\rm :\longmapsto\:1 +  {9k}^{2} + 6k - 21 - 14k = 0

\rm :\longmapsto\:{9k}^{2} - 8k - 20  = 0

\rm :\longmapsto\:{9k}^{2} - 18k + 10k - 20  = 0

\rm :\longmapsto\:9k(k - 2) + 10(k - 2) = 0

\rm :\longmapsto\:(k - 2)(9k+ 10) = 0

\purple{\rm \implies\:\boxed{\tt{ k = 2 \:  \:  \: or \:  \:  \: k =  - \dfrac{10}{9} }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Concept Used :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions