Math, asked by sheetalraj, 11 months ago

determine lim x-π/2(tan3x/tanx)​

Answers

Answered by franktheruler
2

Answer:

The correct answer is 1/3.

Step-by-step explanation:

Let a = π/2 − x

lim(x→π/2)  tan3x/tanx  =lim(a→0)     tan 3(π/2 − a) / tan (π2−a)

                                      = lim(a→0)     (1/tan3a) / (1/tana)

                                      = lim(a→0)     ( tan a / tan 3a )

                                      = lim(a→0)     (sin a * cos 3a) / (cos a * sin3a)

                                      = lima→0       ( sina/a ) ( 3a/sin3a ) ( cos3a/a ) * 1/3

                                      = 1 * (1) * (1/1) * (1/3)   [ this is line number 6 ]

                                      = 1/3

note: we know that

           lim( x→ 0)    sinx / x = 1

we just apply this technique in line number 6.  

Similar questions