Math, asked by ironman29, 1 year ago

determine max/min values of function
f (x) = xlogx

Answers

Answered by Anonymous
31
Hey!!!

Hope this answer will help u..
Attachments:

ironman29: sissy deleted her account.... @coconeha09
ironman29: ;-(((
Answered by pinquancaro
18

Answer:

Minimum value is f(e^{-1})=-\frac{1}{e}

Step-by-step explanation:

Given : Function f(x)=x\log x

To find : Determine the max/min values of function ?

Solution :

To determine the max/min value double derivate the function.

f(x)=x\log x

Derivate w.r.t x,

f'(x)=x\frac{d(\log x)}{dy}+\log x\frac{d(x)}{dy}

f'(x)=x\times \frac{1}{x}+\log x\times 1

f'(x)=1+\log x

For max/min put derivate=0,

1+\log x=0

\log x=-1

x=e^{-1}

Now derivate w.r.t x again,

f''(x)=0+\frac{1}{x}

f''(e^{-1})=\frac{1}{e^{-1}}

f''(e^{-1})=e>0

i.e. f(x) is min at x.

The minimum value at x=e^{-1} is

f(e^{-1})=e^{-1}\log (e^{-1})

f(e^{-1})=\frac{1}{e}\times -1

f(e^{-1})=-\frac{1}{e}

Similar questions