Math, asked by Anonymous, 9 months ago

Determine nature of roots of the quadratic equations.
√3 x² + 2√3 x + √3 = 0 ​

Answers

Answered by Anonymous
31

\huge\underline\frak{\fbox{AnSwEr :-}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Compare √3 x² + 2 √3 x + √3 = 0 with ax²+ bx + c = 0

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

We get a = √3 , b = 2 √3 , c = √3 ,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies b² - 4 ac = (2 √3 )² - 4 x √3 x √3

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies 4 x 3 - 4 x 3

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies 12 - 12

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies 0

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies b² - 4 ac = 0

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\therefore Root of the equation are real and equal.

Answered by Anonymous
9

\rule{200}3

\huge\tt{GIVEN:}

  • a quadratic equation √3 x² + 2√3 x + √3 = 0

\rule{200}1

\huge\tt{TO~FIND:}

  • The natural roots of the equation

\rule{200}1

\huge\tt{SOLUTION:}

By Comparing √3 x² + 2 √3 x + √3 = 0 with ax²+ bx + c = 0

⠀⠀⠀⠀⠀⠀⠀⠀⠀ a = √3 , b = 2 √3 , c = √3

⠀⠀⠀⠀⠀&

⠀⠀⠀⠀⠀⠀↪b² - 4ac = (2√3)² - 4 × √3 ×√3

⠀⠀⠀⠀⠀⠀↪b² - 4ac =4 × 3 - 4 × 3

⠀⠀⠀⠀⠀⠀ ↪b² - 4ac =12 - 12

⠀⠀⠀⠀⠀ b² - 4ac =0

\rule{200}3

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Similar questions