Math, asked by satishpatel98243, 7 months ago

Determine rational numbers p and q if 7+√5/7-√5 - 7-√5/7+√5=p-7√5 9.​

Answers

Answered by Bidikha
3

Correct question -

Determine rational numbers p and q if

 \frac{7 +  \sqrt{5} }{7 -  \sqrt{5} }  -  \frac{7 -  \sqrt{5} }{7 +  \sqrt{5} }  = p - 7 \sqrt{5} q

Solution -

 \frac{7 +  \sqrt{5} }{7 -  \sqrt{5} }  -  \frac{7 -  \sqrt{5} }{7 +  \sqrt{5} }  = p - 7 \sqrt{5} q

By rationalising the denominator we will get -

 \frac{(7 +  \sqrt{5} )(7 +  \sqrt{5}) }{(7 -  \sqrt{5})(7 +  \sqrt{5} ) }  -  \frac{(7 -  \sqrt{5} )(7 -  \sqrt{5} )}{(7 +  \sqrt{5})(7 -  \sqrt{5}  )}  = p - 7 \sqrt{5} q

 \frac{(7 +  \sqrt{5}) {}^{2}  }{ {(7)}^{2} -  {( \sqrt{5} )}^{2}  }  -  \frac{(7 -  \sqrt{5}) {}^{2}  }{ {(7)}^{2} -  {( \sqrt{5}) }^{2}  }  = p - 7 \sqrt{5} q

 \frac{ {(7)}^{2}  +   {( \sqrt{5} )}^{2}  + 2 \times 7 \times  \sqrt{5}  }{49 - 5}  -  \frac{ {(7)}^{2}  +  {( \sqrt{5}) }^{2}  - 2 \times 7 \times  \sqrt{5} }{49 - 5}  = p - 7 \sqrt{5} q

 \frac{49 + 5 + 14 \sqrt{5} }{44}  -  \frac{49 + 5 - 14 \sqrt{5} }{44}  = p - 7 \sqrt{5} q

 \frac{54 + 14 \sqrt{5} }{44}  -  \frac{54 - 14 \sqrt{5} }{44}  = p - 7 \sqrt{5} q

 \frac{54 + 14 \sqrt{5}  - (54 - 14 \sqrt{5} )}{44}  = p - 7 \sqrt{5} q

 \frac{54 + 14 \sqrt{5} - 54 + 14 \sqrt{5}  }{44}  = p - 7 \sqrt{5} q

 \frac{28 \sqrt{5} }{44}  = p - 7 \sqrt{5} q

 \frac{7 \sqrt{5} }{11}   = p - 7 \sqrt{5} q

7 \sqrt{5}  \times  \frac{1}{11}  = p - 7 \sqrt{5} q

We know that,

Rational number is always equal to other rational numbers and irrational numbers is always equal to other irrational numbers.

p =  \frac{1}{11}

And,

7 \sqrt{5}  =  - 7 \sqrt{5} q \\ q =  \frac{7 \sqrt{5} }{ - 7 \sqrt{5} }   \\  q =  - 1

Therefore the value of p is 1/11 and q is - 1

Answered by devivagvala
0

Step-by-step explanation:

satish patel..bjsbjj jakhh d

Similar questions