Math, asked by aakarshbansal12345, 3 months ago

determine the 2nd term of an ap whose 6th term is 12 and 8th term is 32

Answers

Answered by itzsecretagent
126

Answer:

Let a and d be the first term and the common difference of the given AP respectively. Then,

\sf\small{ \underline{\underline\red{ \pmb{Given:-}}}}

 \sf \: a_6 = a+5d=12  \:  \:  \:  \:  \: ----------(I)

And

 \sf a_8 = a+7d=32 \:  \:  -  -  -  -  -  -  -  -  -  -  - (2)

  • Subtracting equation (1) and equation (2)

 \sf2d=20 \\  \\  \sf \implies  d= \cancel\frac{20}{2} \\  \\ \sf \implies \red{d=10}

  • Substituting d = 10 in (1),

 \sf \: a+5(10)=12 \\  \\  \sf  \implies \: a=12-50 \\  \\ \sf  \implies \red{a=-38}

Therefore, the second term of the AP,

  • a = -38
  • d = 10

 \sf \: a_2=a+(2 - 1)d \\  \\  \sf \implies \: a_2=a+d  \\  \\ \sf \implies \: a_2=(-38)+10 \\  \\\sf \implies \: a_2=-28

  • And nth term of the AP

 \sf \: a+(n-1)d \\  \\  \sf \: =(-38)+(n-1)10 \\  \\  \sf \: =(-38)+5n-10 \\  \\  \sf=5n-48

Similar questions