Math, asked by Anonymous, 11 months ago

Determine the antiderivative F of “f” , which is defined by f (x) = 4x3 – 6, where F (0) = 3​

Answers

Answered by Anonymous
3

Step-by-step explanation:

ɢⁱᵛᵉⁿ ᶠᵘⁿᶜᵗⁱᵒⁿ: ᶠ (ˣ) = 4ˣ3 – 6

ɴᵒʷ, ⁱⁿᵗᵉᵍʳᵃᵗᵉ ᵗʰᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ:

∫4ˣ3 – 6 = 4(ˣ4/4)-6ˣ + ᴄ

∫4ˣ3 – 6 = ˣ4 – 6ˣ + ᴄ

ᴛʰᵘˢ, ᵗʰᵉ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᵒᶠ ᵗʰᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ, ғ ⁱˢ ˣ4 – 6ˣ + ᴄ, ʷʰᵉʳᵉ ᴄ ⁱˢ ᵃ ᶜᵒⁿˢᵗᵃⁿᵗ

ᴀˡˢᵒ, ᵍⁱᵛᵉⁿ ᵗʰᵃᵗ, ғ(0) = 3,

ɴᵒʷ, ˢᵘᵇˢᵗⁱᵗᵘᵗᵉ ˣ = 0 ⁱⁿ ᵗʰᵉ ᵒᵇᵗᵃⁱⁿᵉᵈ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ, ʷᵉ ᵍᵉᵗ:

(0)4 – 6(0) + ᴄ = 3

ᴛʰᵉʳᵉᶠᵒʳᵉ, ᴄ = 3.

ɴᵒʷ, ˢᵘᵇˢᵗⁱᵗᵘᵗᵉ ᴄ = 3 ⁱⁿ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ

ʜᵉⁿᶜᵉ, ᵗʰᵉ ʳᵉᵠᵘⁱʳᵉᵈ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ ⁱˢ ˣ4 – 6ˣ + 3

ʜᵒᵖᵉ ⁱᵗ'ˢ ʰᵉˡᵖ ᵘʰ ❤️

Answered by DeviIQueen
1

Answer:

Given Function :ᶠ (ˣ) = 4ˣ3 – 6

ɴow,integrate the function..

∫4ˣ3 – 6 = 4(ˣ4/4)-6ˣ + ᴄ

∫4ˣ3 – 6 = ˣ4 – 6ˣ + ᴄ

ᴛhus, the antiderivative function is the , ғ ⁱˢ ˣ4 – 6ˣ + ᴄ, where ᴄ is a constant

ᴀlso, given that , ғ(0) = 3,

ɴow, substitute ˣ = 0 in the antiderivative function ,we get

(0)4 – 6(0) + ᴄ = 3

ᴛherefore, ᴄ = 3.

ɴow, substitute ᴄ = 3 ⁱⁿ antiderivative function

Hence, the required antiderivative function isˣ4 – 6ˣ + 3

ʜᵒᵖᵉ ⁱᵗ'ˢ ʰᵉˡᵖ ᵘʰ ❤️

Similar questions