Determine the antiderivative F of “f” , which is defined by f (x) = 4x3 – 6, where F (0) = 3
Answers
Step-by-step explanation:
ɢⁱᵛᵉⁿ ᶠᵘⁿᶜᵗⁱᵒⁿ: ᶠ (ˣ) = 4ˣ3 – 6
ɴᵒʷ, ⁱⁿᵗᵉᵍʳᵃᵗᵉ ᵗʰᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ:
∫4ˣ3 – 6 = 4(ˣ4/4)-6ˣ + ᴄ
∫4ˣ3 – 6 = ˣ4 – 6ˣ + ᴄ
ᴛʰᵘˢ, ᵗʰᵉ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᵒᶠ ᵗʰᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ, ғ ⁱˢ ˣ4 – 6ˣ + ᴄ, ʷʰᵉʳᵉ ᴄ ⁱˢ ᵃ ᶜᵒⁿˢᵗᵃⁿᵗ
ᴀˡˢᵒ, ᵍⁱᵛᵉⁿ ᵗʰᵃᵗ, ғ(0) = 3,
ɴᵒʷ, ˢᵘᵇˢᵗⁱᵗᵘᵗᵉ ˣ = 0 ⁱⁿ ᵗʰᵉ ᵒᵇᵗᵃⁱⁿᵉᵈ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ, ʷᵉ ᵍᵉᵗ:
(0)4 – 6(0) + ᴄ = 3
ᴛʰᵉʳᵉᶠᵒʳᵉ, ᴄ = 3.
ɴᵒʷ, ˢᵘᵇˢᵗⁱᵗᵘᵗᵉ ᴄ = 3 ⁱⁿ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ
ʜᵉⁿᶜᵉ, ᵗʰᵉ ʳᵉᵠᵘⁱʳᵉᵈ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ ⁱˢ ˣ4 – 6ˣ + 3
ʜᵒᵖᵉ ⁱᵗ'ˢ ʰᵉˡᵖ ᵘʰ ❤️.....
Given Function :
ᶠ (ˣ) = 4ˣ3 – 6
ɴow,
integrate the function..
∫4ˣ3 – 6 = 4(ˣ4/4)-6ˣ + ᴄ ∫4ˣ3 – 6 = ˣ4 – 6ˣ + ᴄ
ᴛhus,
the antiderivative function is the ,
ғ ⁱˢ ˣ4 – 6ˣ + ᴄ,
where ᴄ is a constant
ᴀlso, given that , ғ(0) = 3,
ɴow, substitute ˣ = 0
in the antiderivative function ,
we get ,
(0)4 – 6(0) + ᴄ = 3
ᴛherefore, ᴄ = 3.
ɴow, substitute ᴄ = 3 ⁱⁿ antiderivative function
Hence, the required antiderivative function isˣ4 – 6ˣ + 3