Math, asked by gopikishan101, 10 months ago

Determine the bilinear transformation which maps z1=0,z2=1,z3=infinite onto w1=i,w2=-1,w3=-i respectively.​

Answers

Answered by lttosavy
8

Answer:

mark it as brainliest

Step-by-step explanation:

Find the bilinear transformation that maps distinct points z1, z2, z3 onto the points w1 = 0, w2 = 1, w3 = ∞. - Slader.

Answered by supreethacmsl
0

Bilinear transformation: A transformation w=\frac{az+b}{cz+d}  where,

  • a, b, c, d are real/complex constants
  • such that ad-bc ≠ 0

A bilinear transformation preserves the cross ratio of four points.

That is,   \frac{(w-w_{1})(w_{2}-w_{3})}{(w_{1}-w_{2})(w_{3}-w)}=\frac{(z-z_{1})(z_{2}-z_{3})}{(z_{1}-z_{2})(z_{3}-z)}  - - - - - (1)

Given, z1=0, z2=1, z3= \infty,

          w1=i,w2=-1,w3=-i

 We have,         \bf\frac{(w-w_{1})(w_{2}-w_{3})}{(w_{1}-w_{2})(w_{3}-w)}=\frac{(z-z_{1})(z_{2}-z_{3})}{(z_{1}-z_{2})(z_{3}-z)} \\\\\\- - - - (2)

We know that the value of z_{3}=\infty, to avoid infinity value let us take out z_{3} common in numerator and denominator in (2)

\bf\frac{(w-w_{1})(w_{2}-w_{3})}{(w_{1}-w_{2})(w_{3}-w)}=\frac{(z-z_{1})z_{3}(\frac{z_{2}}{z_{3}}-1)}{(z_{1}-z_{2})z_{3}(1-\frac{z}{z_{3}})} \\\\\\

Clearly z_{3} on the RHS cancels out,

We have,

        (w,i,-1,i) = (z,0,1,∞)

Substituting these values in (1), we get,

          \bf\frac{(w-i)(-1-(-i))}{(i-(-1))(-i-w)}=\frac{(z-0)(\frac{1}{\infty}-1)}{(0-1)(1-\frac{z}{\infty})} \\\\\\ \frac{(w-i)(-1+i)}{(i+1)(-i-w)}==\frac{z(-1)}{-1(1-0)}\\\\\\  \frac{(w-i)(i-1)}{(i+1)(-i-w)}=z}- - - -(3)

Let us simplify LHS further,

\bf\frac{(w-i)(i-1)}{(i+1)(-i-w)}=\frac{(w-i)(i-1)\times (i+1)}{(i+1)(-i-w)\times(i+1}    

 using\,\,(a+b)^2=a^2+2ab+b^2\,\,for\,\,(i+1)^2\,\, where \,\,a=i\,\,&\,\,b=1\\\\ we\,\,get\,\,(i+1)^2=i^2+2i+1=-1+2i+1=2i\\\\Let\,\,us\,\,use\,\,(a+b)(a-b)=a^2-b^2\,\,for\, (i+1)(i-1)\,\,\\\\(1+i)(1-i)=i^2-1^2=-1-1=-2

               

                          \bf=\frac{(w-i)(i-1)\times (i+1)}{(i+1)(-i-w)\times(i+1)}\\\\=\frac{(-2)(w-i)}{2i\,(-i-w)}\\\\

        \bf\frac{(w-i)(i-1)}{(i+1)(-i-w)}=\frac{2(w-i)}{2i\,(i+w)}\\\\

∴ (3) becomes,

\frac{(z-0)(\frac{1}{\infty}-1)}{(0-1)(1-\frac{z}{\infty})}=\frac{z(-1)}{-1(1-0)}\\\\

                 

                                     

Similar questions