Determine the current in each branch of the network shown in figure
Answers
*The current flowing through various branches of the network is shown in the upper figure*
Let be the current flowing through the outer circuit.
Let be the current flowing through AB branch.
Let be the current flowing through AD branch.
Let be the current flowing through branch BC.
Let be the current flowing through branch BD.
Let us take closed-circuit ABDA into consideration, we know that potential is zero.
i.e ,
⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Let us take closed circuit BCDB into consideration, we know that potential is zero.
i.e ,
⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Let us take closed-circuit ABCFEA into consideration, we know that potential is zero.
i.e ,
⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
From equation ( 1 ) and ( 2 ), we have :
⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Putting equation ( 4 ) in equation ( 1 ) , we have :
⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
From the above equation , we infer that :
| |
Putting equation ( 4 ) in equation ( 1 ) , we obtain
⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Putting equations ( 4 ) and ( 5 ) in equation ( 7 ) , we obtain
⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Equation ( 4 ) reduces to
⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀
Therefore, current in each branch is given as :
In branch
In branch
In branch
In branch
In branch
Total current
*The current flowing through various branches of the network is shown in the upper figure*
Let {\bf{I_{1}}}I
1
be the current flowing through the outer circuit.
Let {\bf{I_{2}}}I
2
be the current flowing through AB branch.
Let {\bf{I_{3}}}I
3
be the current flowing through AD branch.
Let {\bf{I_{2} – I_{4}}}I
2
–I
4
be the current flowing through branch BC.
Let \bf{I_{3} + I_{4}}I
3
+I
4
be the current flowing through branch BD.
Let us take closed-circuit ABDA into consideration, we know that potential is zero.
i.e , {\bf{ : \implies 10 I_{2} + 5 I_{4} – 5 I_{3} = 0}}:⟹10I
2
+5I
4
–5I
3
=0
⠀⠀⠀⠀⠀⠀⠀⠀\bf { : \implies 2 I_{2} + I_{4} – I_{3} = 0}:⟹2I
2
+I
4
–I
3
=0
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀{\bf{\red{ : \implies I_{3} = 2 I_{2} + l_{4}……….(1)}}}:⟹I
3
=2I
2
+l
4
……….(1)
Let us take closed circuit BCDB into consideration, we know that potential is zero.
i.e , \bf{ : \implies 5 ( I_{2} – I_{4} ) – 10 ( I_{3} + I_{4} ) – 5 I_{4} = 0}:⟹5(I
2
–I
4
)–10(I
3
+I
4
)–5I
4
=0
⠀⠀⠀⠀⠀⠀⠀⠀ \bf{ : \implies 5 I_{2} + 5 I_{4} – 10 I_{3} – 10 I_{4} – 5 I_{4} = 0}:⟹5I
2
+5I
4
–10I
3
–10I
4
–5I
4
=0
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \bf{ : \implies 5 I_{2} – 10 I_{3} – 20 I_{4} = 0}:⟹5I
2
–10I
3
–20I
4
=0
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \bf{\red{ : \implies I_{2} = 2 I_{3} – 4 I_{4}……….(2)}}:⟹I
2
=2I
3
–4I
4
……….(2)
Let us take closed-circuit ABCFEA into consideration, we know that potential is zero.
i.e , {\bf{ : \implies – 10 + 10 ( I_{1} ) + 10 ( I_{2} ) + 5 ( I_{2} – I_{4} ) = 0}}:⟹–10+10(I
1
)+10(I
2
)+5(I
2
–I
4
)=0
⠀⠀⠀⠀⠀⠀⠀⠀ {\bf{ : \implies 10 = 15 I_{2} + 10 I_{1} – 5 I_{4}}}:⟹10=15I
2
+10I
1
–5I
4
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ {\red{\bf{ : \implies 3 I_{2} + 2 I_{2} – I_{4} = 2}……….(3)}}:⟹3I
2
+2I
2
–I
4
=2……….(3)
From equation ( 1 ) and ( 2 ), we have :
⠀⠀⠀⠀⠀⠀⠀⠀ {\bf{ : \implies I_{3} = 2 ( 2 I_{3} + 4 I_{4} ) + I_{4}}}:⟹I
3
=2(2I
3
+4I
4
)+I
4
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀{\bf{ : \implies I_{3} = 4 I_{3} + 8 I_{4} + I_{4}}}:⟹I
3
=4I
3
+8I
4
+I
4
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies – 3 I_{3} = 9 I_{4}}:⟹–3I
3
=9I
4
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\red{\bf{ : \implies – 3 I_{4} = + I_{3}}……….(4)}:⟹–3I
4
=+I
3
……….(4)
Putting equation ( 4 ) in equation ( 1 ) , we have :
⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies I_{3} = 2 I_{2} + I_{4}}:⟹I
3
=2I
2
+I
4
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies – 4 I_{4} = 2 I_{2}}:⟹–4I
4
=2I
2
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\bf{\red{ : \implies I_{2} = – 2 I_{4}……….(5)}}:⟹I
2
=–2I
4
……….(5)
From the above equation , we infer that :
| {\overline{\underline{\bf{\red{ : \implies I_{1} = I_{3} + I_{2} ……….(6)}}}}}
:⟹I
1
=I
3
+I
2
……….(6)
|
Putting equation ( 4 ) in equation ( 1 ) , we obtain
⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies 3 I_{2} + 2 ( I_{3} + I_{2} ) – I_{4} = 2}:⟹3I
2
+2(I
3
+I
2
)–I
4
=2
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\red{\bf{ : \implies 5 I_{2} + 2 I_{3} – I_{4} = 2}……….(7)}:⟹5I
2
+2I
3
–I
4
=2……….(7)
Putting equations ( 4 ) and ( 5 ) in equation ( 7 ) , we obtain
⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies 5 ( – 2 I_{4} ) + 2 ( – 3 I_{4} ) – I_{4} = 2 }:⟹5(–2I
4
)+2(–3I
4
)–I
4
=2
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies – 10 I_{4} – 6 I_{4} – I_{4} = 2}:⟹–10I
4
–6I
4
–I
4
=2
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies 17 I_{4} = – 2}:⟹17I
4
=–2
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\boxed{\bf{ : \implies l_{ 4 } = \frac{–2}{ 17} A}}
:⟹l
4
=
17
–2
A
Equation ( 4 ) reduces to
\bf{ : \implies I_{3} = – 3 ( I_{4} )}:⟹I
3
=–3(I
4
)
⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies I_{ 3 } = – 3 ( \frac{ – 2 }{ 17 } ) }:⟹I
3
=–3(
17
–2
)
\bf{ : \implies I_{ 2 } = – 2( l_{4}) }:⟹I
2
=–2(l
4
)
⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies I _{ 2 } – I _{ 4 } = \frac{ 4 }{ 17 } – \frac{ – 2 }{ 17 } = \frac{ 6 }{ 17 } A}:⟹I
2
–I
4
=
17
4
–
17
–2
=
17
6
A
\bf{ : \implies I _{ 3 } + I _{ 4 } = \frac{ 6 }{ 17 } – \frac{ – 2 }{ 17 } }:⟹I
3
+I
4
=
17
6
–
17
–2
⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies I _{ 3 } + I _{ 4 } = \frac{10}{17} A}:⟹I
3
+I
4
=
17
10
A
Therefore, current in each branch is given as :
In branch \bf{ AB = \frac{ 4 }{ 17 } A}AB=
17
4
A
In branch \bf{ BC = \frac{ 6 }{ 17 } A}BC=
17
6
A
In branch \bf{ CD = \frac{ – 4 }{ 17 } A}CD=
17
–4
A
In branch \bf{AD = \frac{ 6 }{ 17 } A}AD=
17
6
A
In branch \bf{ BD = \frac{ – 2 }{ 17 } A}BD=
17
–2
A
Total current \bf{ \large = \frac{ 4 }{ 17 } + \frac{ 6 }{ 17 } + \frac{ – 4 }{ 17 } + \frac{ 6 }{ 17 } + \frac{ – 2 }{ 17}}=
17
4
+
17
6
+
17
–4
+
17
6
+
17
–2
\bf{\red{ \Large ⇨ \: \frac{ 10 }{ 17 } A }}⇨
17
10
A