Physics, asked by drashti12, 6 months ago

Determine the current in each branch of the network shown in figure​

Attachments:

Answers

Answered by Anonymous
69

*The current flowing through various branches of the network is shown in the upper figure*

Let  {\bf{I_{1}}} be the current flowing through the outer circuit.

Let  {\bf{I_{2}}} be the current flowing through AB branch.

Let  {\bf{I_{3}}} be the current flowing through AD branch.

Let  {\bf{I_{2} – I_{4}}} be the current flowing through branch BC.

Let  \bf{I_{3}  + I_{4}} be the current flowing through branch BD.

Let us take closed-circuit ABDA into consideration, we know that potential is zero.

i.e ,  {\bf{ : \implies 10 I_{2} + 5 I_{4} – 5 I_{3} = 0}}

⠀⠀⠀⠀⠀⠀⠀⠀ \bf { : \implies 2 I_{2} +  I_{4} –  I_{3} = 0}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ {\bf{\red{ : \implies I_{3} = 2 I_{2} + l_{4}……….(1)}}}

Let us take closed circuit BCDB into consideration, we know that potential is zero.

i.e ,  \bf{ : \implies 5 ( I_{2} – I_{4} ) – 10 ( I_{3} + I_{4} ) – 5 I_{4} = 0}

⠀⠀⠀⠀⠀⠀⠀⠀  \bf{ : \implies 5 I_{2} + 5 I_{4} – 10 I_{3} – 10 I_{4} –  5 I_{4} = 0}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀  \bf{ : \implies 5 I_{2} – 10 I_{3} –  20 I_{4} = 0}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀  \bf{\red{ : \implies I_{2} = 2 I_{3} – 4 I_{4}……….(2)}}

Let us take closed-circuit ABCFEA into consideration, we know that potential is zero.

i.e ,  {\bf{ : \implies – 10 + 10 ( I_{1} ) + 10 ( I_{2} ) + 5 ( I_{2} –  I_{4} ) = 0}}

⠀⠀⠀⠀⠀⠀⠀⠀  {\bf{ : \implies 10 = 15 I_{2} + 10 I_{1} – 5 I_{4}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀  {\red{\bf{ : \implies 3 I_{2} + 2 I_{2} – I_{4} = 2}……….(3)}}

From equation ( 1 ) and ( 2 ), we have :

⠀⠀⠀⠀⠀⠀⠀⠀  {\bf{ : \implies  I_{3} = 2 ( 2 I_{3} + 4 I_{4} ) + I_{4}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ {\bf{ : \implies  I_{3} = 4 I_{3} + 8 I_{4} + I_{4}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \bf{  : \implies – 3 I_{3} = 9 I_{4}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \red{\bf{ : \implies – 3 I_{4} = + I_{3}}……….(4)}

Putting equation ( 4 ) in equation ( 1 ) , we have :

⠀⠀⠀⠀⠀⠀⠀⠀ \bf{ : \implies  I_{3} = 2 I_{2} + I_{4}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \bf{ : \implies – 4 I_{4} = 2 I_{2}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \bf{\red{ :  \implies I_{2}  = – 2 I_{4}……….(5)}}

From the above equation , we infer that :

|  {\overline{\underline{\bf{\red{ :  \implies I_{1}  = I_{3} + I_{2} ……….(6)}}}}} |

Putting equation ( 4 ) in equation ( 1 ) , we obtain

⠀⠀⠀⠀⠀⠀⠀⠀ \bf{  : \implies 3 I_{2}  + 2 ( I_{3} + I_{2} ) – I_{4} = 2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \red{\bf{ : \implies 5 I_{2} + 2 I_{3} – I_{4} = 2}……….(7)}

Putting equations ( 4 ) and ( 5 ) in equation ( 7 ) , we obtain

⠀⠀⠀⠀⠀⠀⠀⠀ \bf{ : \implies  5 ( – 2 I_{4} ) + 2 ( – 3 I_{4}  ) – I_{4} = 2 }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \bf{ : \implies – 10 I_{4} –  6 I_{4} – I_{4} = 2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \bf{ : \implies 17 I_{4} = – 2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \boxed{\bf{ : \implies  l_{ 4 } = \frac{–2}{ 17} A}}

Equation ( 4 ) reduces to

 \bf{  : \implies I_{3} = – 3 ( I_{4} )}

⠀⠀⠀⠀⠀⠀⠀⠀ \bf{ : \implies  I_{ 3 } = – 3  ( \frac{ – 2 }{ 17 }  ) }

 \bf{ : \implies I_{ 2 } = – 2( l_{4})  }

⠀⠀⠀⠀⠀⠀⠀⠀ \bf{ : \implies  I _{ 2 } – I _{ 4 } = \frac{ 4 }{ 17 } – \frac{ – 2 }{ 17 } = \frac{ 6 }{ 17 } A}

 \bf{  : \implies I _{ 3 } + I _{ 4 } = \frac{ 6 }{ 17 } – \frac{ – 2 }{ 17 }  }

⠀⠀⠀⠀⠀⠀⠀⠀ \bf{ : \implies I _{ 3 } + I _{ 4 } = \frac{10}{17} A}

Therefore, current in each branch is given as :

In branch  \bf{ AB = \frac{ 4 }{ 17 } A}

In branch  \bf{ BC = \frac{ 6 }{ 17 } A}

In branch  \bf{ CD = \frac{ – 4 }{ 17 } A}

In branch  \bf{AD = \frac{ 6 }{ 17 } A}

In branch  \bf{ BD = \frac{ – 2 }{ 17 } A}

Total current  \bf{ \large  = \frac{ 4 }{ 17 } + \frac{ 6 }{ 17 } + \frac{ – 4 }{ 17 } + \frac{ 6 }{ 17 } + \frac{ – 2 }{ 17}}

 \bf{\red{ \Large ⇨ \:  \frac{ 10 }{ 17 } A }}

Attachments:
Answered by DynamicPlayer
1

*The current flowing through various branches of the network is shown in the upper figure*

Let {\bf{I_{1}}}I

1

be the current flowing through the outer circuit.

Let {\bf{I_{2}}}I

2

be the current flowing through AB branch.

Let {\bf{I_{3}}}I

3

be the current flowing through AD branch.

Let {\bf{I_{2} – I_{4}}}I

2

–I

4

be the current flowing through branch BC.

Let \bf{I_{3} + I_{4}}I

3

+I

4

be the current flowing through branch BD.

Let us take closed-circuit ABDA into consideration, we know that potential is zero.

i.e , {\bf{ : \implies 10 I_{2} + 5 I_{4} – 5 I_{3} = 0}}:⟹10I

2

+5I

4

–5I

3

=0

⠀⠀⠀⠀⠀⠀⠀⠀\bf { : \implies 2 I_{2} + I_{4} – I_{3} = 0}:⟹2I

2

+I

4

–I

3

=0

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀{\bf{\red{ : \implies I_{3} = 2 I_{2} + l_{4}……….(1)}}}:⟹I

3

=2I

2

+l

4

……….(1)

Let us take closed circuit BCDB into consideration, we know that potential is zero.

i.e , \bf{ : \implies 5 ( I_{2} – I_{4} ) – 10 ( I_{3} + I_{4} ) – 5 I_{4} = 0}:⟹5(I

2

–I

4

)–10(I

3

+I

4

)–5I

4

=0

⠀⠀⠀⠀⠀⠀⠀⠀ \bf{ : \implies 5 I_{2} + 5 I_{4} – 10 I_{3} – 10 I_{4} – 5 I_{4} = 0}:⟹5I

2

+5I

4

–10I

3

–10I

4

–5I

4

=0

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \bf{ : \implies 5 I_{2} – 10 I_{3} – 20 I_{4} = 0}:⟹5I

2

–10I

3

–20I

4

=0

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \bf{\red{ : \implies I_{2} = 2 I_{3} – 4 I_{4}……….(2)}}:⟹I

2

=2I

3

–4I

4

……….(2)

Let us take closed-circuit ABCFEA into consideration, we know that potential is zero.

i.e , {\bf{ : \implies – 10 + 10 ( I_{1} ) + 10 ( I_{2} ) + 5 ( I_{2} – I_{4} ) = 0}}:⟹–10+10(I

1

)+10(I

2

)+5(I

2

–I

4

)=0

⠀⠀⠀⠀⠀⠀⠀⠀ {\bf{ : \implies 10 = 15 I_{2} + 10 I_{1} – 5 I_{4}}}:⟹10=15I

2

+10I

1

–5I

4

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ {\red{\bf{ : \implies 3 I_{2} + 2 I_{2} – I_{4} = 2}……….(3)}}:⟹3I

2

+2I

2

–I

4

=2……….(3)

From equation ( 1 ) and ( 2 ), we have :

⠀⠀⠀⠀⠀⠀⠀⠀ {\bf{ : \implies I_{3} = 2 ( 2 I_{3} + 4 I_{4} ) + I_{4}}}:⟹I

3

=2(2I

3

+4I

4

)+I

4

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀{\bf{ : \implies I_{3} = 4 I_{3} + 8 I_{4} + I_{4}}}:⟹I

3

=4I

3

+8I

4

+I

4

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies – 3 I_{3} = 9 I_{4}}:⟹–3I

3

=9I

4

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\red{\bf{ : \implies – 3 I_{4} = + I_{3}}……….(4)}:⟹–3I

4

=+I

3

……….(4)

Putting equation ( 4 ) in equation ( 1 ) , we have :

⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies I_{3} = 2 I_{2} + I_{4}}:⟹I

3

=2I

2

+I

4

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies – 4 I_{4} = 2 I_{2}}:⟹–4I

4

=2I

2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\bf{\red{ : \implies I_{2} = – 2 I_{4}……….(5)}}:⟹I

2

=–2I

4

……….(5)

From the above equation , we infer that :

| {\overline{\underline{\bf{\red{ : \implies I_{1} = I_{3} + I_{2} ……….(6)}}}}}

:⟹I

1

=I

3

+I

2

……….(6)

|

Putting equation ( 4 ) in equation ( 1 ) , we obtain

⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies 3 I_{2} + 2 ( I_{3} + I_{2} ) – I_{4} = 2}:⟹3I

2

+2(I

3

+I

2

)–I

4

=2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\red{\bf{ : \implies 5 I_{2} + 2 I_{3} – I_{4} = 2}……….(7)}:⟹5I

2

+2I

3

–I

4

=2……….(7)

Putting equations ( 4 ) and ( 5 ) in equation ( 7 ) , we obtain

⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies 5 ( – 2 I_{4} ) + 2 ( – 3 I_{4} ) – I_{4} = 2 }:⟹5(–2I

4

)+2(–3I

4

)–I

4

=2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies – 10 I_{4} – 6 I_{4} – I_{4} = 2}:⟹–10I

4

–6I

4

–I

4

=2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies 17 I_{4} = – 2}:⟹17I

4

=–2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\boxed{\bf{ : \implies l_{ 4 } = \frac{–2}{ 17} A}}

:⟹l

4

=

17

–2

A

Equation ( 4 ) reduces to

\bf{ : \implies I_{3} = – 3 ( I_{4} )}:⟹I

3

=–3(I

4

)

⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies I_{ 3 } = – 3 ( \frac{ – 2 }{ 17 } ) }:⟹I

3

=–3(

17

–2

)

\bf{ : \implies I_{ 2 } = – 2( l_{4}) }:⟹I

2

=–2(l

4

)

⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies I _{ 2 } – I _{ 4 } = \frac{ 4 }{ 17 } – \frac{ – 2 }{ 17 } = \frac{ 6 }{ 17 } A}:⟹I

2

–I

4

=

17

4

17

–2

=

17

6

A

\bf{ : \implies I _{ 3 } + I _{ 4 } = \frac{ 6 }{ 17 } – \frac{ – 2 }{ 17 } }:⟹I

3

+I

4

=

17

6

17

–2

⠀⠀⠀⠀⠀⠀⠀⠀\bf{ : \implies I _{ 3 } + I _{ 4 } = \frac{10}{17} A}:⟹I

3

+I

4

=

17

10

A

Therefore, current in each branch is given as :

In branch \bf{ AB = \frac{ 4 }{ 17 } A}AB=

17

4

A

In branch \bf{ BC = \frac{ 6 }{ 17 } A}BC=

17

6

A

In branch \bf{ CD = \frac{ – 4 }{ 17 } A}CD=

17

–4

A

In branch \bf{AD = \frac{ 6 }{ 17 } A}AD=

17

6

A

In branch \bf{ BD = \frac{ – 2 }{ 17 } A}BD=

17

–2

A

Total current \bf{ \large = \frac{ 4 }{ 17 } + \frac{ 6 }{ 17 } + \frac{ – 4 }{ 17 } + \frac{ 6 }{ 17 } + \frac{ – 2 }{ 17}}=

17

4

+

17

6

+

17

–4

+

17

6

+

17

–2

\bf{\red{ \Large ⇨ \: \frac{ 10 }{ 17 } A }}⇨

17

10

A

Similar questions