Math, asked by idanpt123, 7 months ago

Determine the equation of a line parallel to y=-2x+7 with the same x intercept as 3y-4x=16.

Answers

Answered by adityabisht895
0

Answer:

the equation intersect actually at 1 point

Answered by ab548
0

Answer:  2x + y = 8

Step-by-step explanation:

Let equation of line parallel to  l_{2}  => y = -2x + 7 be   l_{1}  => y = mx + b

Let slope of  l_{1}  and  l_{2}  be  m_{1}  and  m_{2} respectively.

slope of l_{2} = m_{2} = \frac{-2}{1} => -2

{ l_{1} and l_{2} are parallel } => m_{1} = m_{2}

                                     => m_{1} = -2      { m_{2} = -2 }

.: Equation of line ( SLOPE INTERCEPT FORM ) => y = mx + b

                                     Put m_{1} = -2                        => y = -2x + b ------------ ( 1. )

x - intercept of 3y - 4x = 16

{ y = 0 } => 0 - 4x = 16

            => -4x = 16

            => x = -4 = A

Put x - intercept x = -4 and y = 0 in ( 1. ) => 0 = -2( -4 ) + b

                                                                 => b = 8

.: Equation of line  l_{1}  =>  2x + y = 8

Similar questions