Math, asked by sunumonb12, 4 months ago

Determine the equation of the circle if its Centre is (8, -6) and which passes

through the point (5, -2).​

Answers

Answered by aarunya78
1

hope it's help uhh

please follow me

Attachments:
Answered by Syamkumarr
3

Answer:

Equation of the circle is  (x - 8)² + ( y + 6)² = 5²  or

                               x² + y² - 16x + 12y + 75 = 0  

Given problem:    

Determine the equation of the circle if its Center is (8, -6) and which passes through the point (5, -2).​

Step-by-step explanation:

let  (x - h)² + (y - k)² = r²_(1)  be the required equation of the circle

here (h, k) is center of the circle and r = radius  

given that center of the circle = (8, -6)

substitute (8, -6) in (1)

        (x - 8)² + (y - (-6))² = r²  

        (x - 8)² + ( y + 6)² = r² _(2)

(2) passes through (5, -2)

          (5 - 8)² + ( -2 + 6)² = r²  

                        (- 3)² + 4² = r²

                               r² = 9 +16 = 25

                               r² = 5²  

                                 r = 5

the required equation is   (x - 8)² + ( y + 6)² = 5²

                           x² + 64 -16x + y² +36 +12y = 25

                           x² + y² - 16x + 12y +100 -25 = 0

                           x² + y² - 16x + 12y + 75 = 0        

Similar questions