Math, asked by sidarth2623, 11 months ago

determine the equation of the circle passing through the point(3,5) and having its center at the intersection of the lines x-y =6 and 2x +3y+8=0​

Answers

Answered by sanjeevk28012
0

Given :

The circle passing through point = 3 , 5

The center at the intersection lines are x - y = 6  and  2 x + 3 y = - 8

Find :

The equation of circle

Solution :

∵  The lines are  x - y = 6  and  2 x + 3 y = - 8

Solving lines equation

x - y = 6                   .........1  

2 x + 3 y = - 8           ..........2

i.e

 ( 2 x + 3 y ) + 3 ( x - y ) = - 8 + 3 × 6

Or, ( 2 x + 3 x ) + ( 3 y - 3 y ) = - 8 + 18

Or,  5 x + 0 = 10

Or,  5 x = 10

∴        x = \dfrac{10}{5} = 2

Put the value of x into eq 1

 2 - y = 6

Or,  y = 2 - 6 = - 4

∵ The circle passes through points x_1 , y_1 = 3 , 5

                                                          x_2 , y_2 = 2 , - 4

Distance between points  x_1 , y_1 ,  x_2 , y_2  = r = \sqrt{( x_2-x_2)^{2}+(y_2-y_1)^{2}  }

                                                                       = \sqrt{( 2-3)^{2}+(-4-5)^{2}  }

                                                                       = \sqrt{82}

The standard equation of circle = (X - x_1 )^{2} + (Y - y_1)^{2} = r²

 where r = radius

And r =  \sqrt{82}

Or,   (X - 3 )^{2} + (Y - 5)^{2} = ( \sqrt{82}

∴      (X - 3 )^{2} + (Y - 5)^{2} = 82

Hence, The equation of circle is     (X - 3 )^{2} + (Y - 5)^{2} = 82   Answer

Similar questions