Determine the focus coordinates, the axis of the parabola, the equation of the directrix and the latus rectum length for y^2 = -8x
Answers
The given equation is y² = - 8x
\textrm{Here, the coefficient of x is negative.}Here, the coefficient of x is negative.
\textrm{Hence, the parabola opens towards the left}Hence, the parabola opens towards the left
\textrm{On comparing this equation with y² = 4ax , we get,}On comparing this equation with y² = 4ax , we get,
\begin{gathered} \sf {4a = -8 }\\ :\implies \sf{a = 2} \\\end{gathered}
4a=−8
:⟹a=2
\begin{gathered} \textsf \pink{∴ Coordinates of the focus = (-a,0) =} \sf \color{purple}{ \left( -2,0 \right)} \\ \end{gathered}
∴ Coordinates of the focus = (-a,0) =(−2,0)
\textrm{Axis of the parabola is the x-axis i.e y = 0}Axis of the parabola is the x-axis i.e y = 0
\textrm{Equation of directrix, x = a i.e. x = 2 }Equation of directrix, x = a i.e. x = 2
: \boxed{ \textsf{\red{Length of latus rectum = 4a = 8}}}:
Length of latus rectum = 4a = 8
\sf \color{azure}\fcolorbox{pink}{black}{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: @Saanvigrover2007 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:}
@goelrohnit2