Math, asked by ranimncedi09, 1 month ago

Determine the following integrals

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Given \:Question - }}

 \sf \: Evaluate \: \displaystyle\int\rm  {3}^{x}. {x}^{2}  \: dx

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:  \: \displaystyle\int\rm  {3}^{x}. {x}^{2}  \: dx

We know, Integration by Parts,

\boxed{ \sf \: \displaystyle\int\rm uv \: x = u\displaystyle\int\rm vdx - \displaystyle\int\rm \bigg(\dfrac{d}{dx}u\displaystyle\int\rm vdx \bigg) dx}

So,

Here,

 \boxed{ \sf \: u \:  =  \:  {x}^{2}}  \:  \: and \:  \: \boxed{ \sf \: v \:  =  \:  {3}^{x}}

So, using this result, we get

\rm \:  =  \:  {x}^{2} \displaystyle\int\rm  {3}^{x} dx - \displaystyle\int\rm \bigg(\dfrac{d}{dx} {x}^{2} \displaystyle\int\rm  {3}^{x} dx \bigg) dx

\rm \:  =  \:  {x}^{2}\dfrac{ {3}^{x} }{log3}  - \displaystyle\int\rm 2x \times \dfrac{ {3}^{x} }{log3} \: dx

\rm \:  =  \: \dfrac{ {x}^{2} {3}^{x}  }{log3} - \dfrac{2}{log3}\displaystyle\int\rm x .{3}^{x} \: dx

\rm \:  =  \: \dfrac{ {x}^{2} {3}^{x}  }{log3} - \dfrac{2}{log3}\bigg[x\displaystyle\int\rm {3}^{x} \: dx -  \displaystyle\int\rm \bigg(\dfrac{d}{dx}x\displaystyle\int\rm  {3}^{x} dx \bigg) dx\bigg]

\rm \:  =  \: \dfrac{ {x}^{2} {3}^{x}  }{log3} - \dfrac{2}{log3}\bigg[x\dfrac{ {3}^{x} }{log3} -  \displaystyle\int\rm \bigg(\dfrac{ {3}^{x} }{log3}\bigg) dx\bigg]

\rm \:  =  \: \dfrac{ {x}^{2} {3}^{x}  }{log3} - \dfrac{2}{log3}\bigg[x\dfrac{ {3}^{x} }{log3} -  \dfrac{1}{log3}\displaystyle\int\rm \bigg( {3}^{x} \bigg) dx\bigg]

\rm \:  =  \: \dfrac{ {x}^{2} {3}^{x}  }{log3} - \dfrac{2}{log3}\bigg[x\dfrac{ {3}^{x} }{log3} -  \dfrac{1}{log3} \times \dfrac{ {3}^{x} }{log3}\bigg] + c

\rm \:  =  \: \dfrac{ {x}^{2} {3}^{x}  }{log3} - \dfrac{2x. {3}^{x} }{ {(log3)}^{2} } + \dfrac{2. {3}^{x} }{ {(log3)}^{3} } + c

Hence,

\boxed{ \sf \: \displaystyle\int\rm  {x}^{2} . {3}^{x}dx \: \:  =  \bf \:   \dfrac{ {x}^{2} {3}^{x}  }{log3} - \dfrac{2x. {3}^{x} }{ {(log3)}^{2} } + \dfrac{2. {3}^{x} }{ {(log3)}^{3} } + c}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions