..
Determine the Fourier expansion of f(x) = x in
(-pie, pie)
Answers
Answered by
0
Answer:
Calculate Fourier series of f(x)=x2 , x∈ [−π,π] and determine module and phase spectrum
f(x)=a02+∑n=1+∞an cos(nx) + bn sin(nx)
a0=1π∫π−πx2 dx=23π2
an=1π∫π−πx2 cos(nx) dx=1π 2(π2n2−2)sin(nπ)+4πncos(nπ)n3=4(−1)nn2
bn=0∀n≥1
because f is even
f(x)=π23+4 ∑n=1+∞(−1)nn2 cos(nx)
How can I determine module and phase spectrum?
Should I calculate the Fourier series coefficients in different values of n, then calculate module and phase of the result?
Thanks!
Similar questions
English,
1 month ago
Computer Science,
1 month ago
Math,
1 month ago
Social Sciences,
3 months ago
Chemistry,
3 months ago
Chemistry,
10 months ago