Physics, asked by vaibhavcce2287, 1 month ago

Determine the frequencies of the fundamental mode and the next two harmonics that can be set up on a sitar string of length 1.0 m. Take the speed of waves of the string to be 2.8 10 ms .

Answers

Answered by nirman95
7

Fundamental mode and next two harmonics:

1. For \rm fun{da}mental frequency:

 \therefore \:  \dfrac{ \lambda}{2}  = l

 \implies \:  \lambda = 2l

Now, frequency be f :

 \therefore \: f =  \dfrac{v}{ \lambda}

 \implies \: f =  \dfrac{280}{ 2 \times 1}

 \implies \: f =  140 \: hz

__________________________

For 2nd harmonic:

 \therefore \:  \dfrac{ \lambda}{2}   +  \dfrac{ \lambda}{2} = l

 \implies \:  \lambda= l

Now, frequency be f2:

 \therefore \: f2 =  \dfrac{v}{ \lambda}

 \implies \: f2 =  \dfrac{280}{ 1}

 \implies \: f2 =  280 \: hz

________________________

For 3rd harmonic:

 \therefore \:  \dfrac{ \lambda}{2}   +  \dfrac{ \lambda}{2}  +  \dfrac{ \lambda}{2} = l

 \implies \:  \lambda =  \dfrac{2l}{3}

Let frequency be f3 :

 \therefore \: f3 =  \dfrac{v}{ \lambda}

 \implies \: f3 =  \dfrac{v \times 3}{ 2 \times 1}

 \implies \: f3 =  \dfrac{280 \times 3}{ 2 \times 1}

 \implies \: f3 = 420 \: hz

Hope It Helps !

Similar questions