Math, asked by dj045150, 5 hours ago

Determine the general and particular solution of the Differential equation y (2x² - xy + y²) dx -x² (2x - y) dy = 0​

Answers

Answered by mandanraveena
0

Answer:

me toehgfdfggdskccgyjj

Answered by manopunniamoorthy231
0

Given, (x  

2

+y  

2

)dx−2xydy=0

⇒(x  

2

+y  

2

)dx=2xydy

⇒  

dx

dy

=  

2xy

x  

2

+y  

2

 

    .... (i)

Let y=vx

Thus,  

dx

dy

=v+x  

dx

dv

 

Thus, v+x  

dx

dv

=  

2x(vx)

x  

2

+(vx)  

2

 

 

⇒v+x  

dx

dv

=  

2v

1+v  

2

 

 

⇒x  

dx

dv

=  

2v

1+v  

2

 

−v

⇒x  

dx

dv

=  

2v

1+v  

2

−2v  

2

 

 

⇒x  

dx

dv

=  

2v

1−v  

2

 

 

⇒  

x

dx

=  

1−v  

2

 

2v

dv

⇒  

x

dx

−  

1−v  

2

 

2v

dv=0    .... (ii)

Integrating both sides, we have

logx+log(1−v  

2

)=logC

⇒logx(1−v  

2

)=logC

⇒x(1−v  

2

)=C

⇒x(1−  

x  

2

 

y  

2

 

)=C

⇒x(  

x  

2

 

x  

2

−y  

2

 

)=C

⇒x  

2

−y  

2

=Cx

Similar questions