Math, asked by moganoelizabeth9, 2 months ago

Determine the general solution of 2 sin x.cosx- cos x = 0​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

➢ Given Trigonometric equation is

\rm :\longmapsto\:2sinx \: cosx  - cosx= 0

\rm :\longmapsto\:cosx(2sinx - 1) = 0

\rm :\implies\:cosx = 0 \:  \:  \: or \:  \:  \: 2sinx - 1 = 0

Consider,

\rm :\longmapsto\:\:cosx = 0

\bf\implies \:x = (2n + 1)\dfrac{\pi}{2}  \:  \: where \: n \:  \in \: Z

Now,

Consider,

\rm :\longmapsto\:2sinx - 1 = 0

\rm :\longmapsto\:2sinx  = 1

\rm :\longmapsto\:sinx = \dfrac{1}{2}

\rm :\longmapsto\:sinx =sin \dfrac{\pi}{6}

\bf\implies \:x = n\pi +  {( - 1)}^{n}\dfrac{\pi}{6}  \:  \: where \: n \:  \in \: Z

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi \\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\\ \\ \sf tanx = 0 & \sf x = n\pi\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\\ \\ \sf tanx = tany & \sf x = n\pi + y \end{array}} \\ \end{gathered}\end{gathered}

 \:  \:  \:   \:  \:  \: \:  \bull \bf \:  \:  \:  \:  \:  \: where \: n \:  \in \: Z

Lets solved some more examples!!!

Find the principal solution of the following:-

1. 2sinx = 1

can be rewritten as sinx = 1/2

Since, sinx is positive in Ist and 2nd quadrant.

So, x = 30° or 180° - 30°

i.e. x = 30° or 150°.

2. 2cosx + 1 = 0

can be rewritten as cosx = - 1/2

Since, cosx is negative in 3rd and 4th quadrant.

So, x = 180° - 60° or 180° + 60°

i.e. x = 120° or 240°.

Similar questions