Determine the general solution of the DE 2(2x² + y²)dx - xydy = 0
Answers
Answered by
8
Answer:
4x² + y² / x⁴ = C
Step-by-step explanation:
2(2x + y²)dx - xydy = 0
Let y = vx, dy = v • dx + x • dv
2(2x² + v²x²) • dx - x(vx) • (v • dv + x • dv) = 0
==> (4 + v²) • dv = vx • dv
==> dx/x = v • dv/4 + v²
Integrate both sides, we get
ln(4 + v²)/2 = lnx + C
==> 4 + v²/x² = C
==> 4 + y²/x² / x² = C
==> 4x² + y²/x⁴ = C
Answered by
1
Answer:
C = 4x² + y² / x⁴
Step-by-step explanation:
Mark me brainliest
Similar questions