Math, asked by Anonymous, 8 months ago

Determine the height of a mountain if the elevation of its top at an unknown distance from the base is 30° and at a distance 10 km further off from the mountain, along the same line, the angle of elevation is 15°. (use tan 15° = 0.27)​

Answers

Answered by DynamicWarrior
21

Answer:

Step-by-step explanation:

Mountain of height h = AB.

Point at a distance of x  = C .

Angle of elevation of the top at C =  30  ∘

Point at a distance of 10 km from C = D

Such that the angle of elevation at D is of15  ∘

 

In △ CAB , we have  

tan30  ∘  =  \frac{AC}{AB}

 

\frac{1}{\sqrt{3} } = \frac{h}{x}

⇒x=  \sqrt{3x}

​  

 In △ DAB  we have  

tan15  ∘  =  \frac{AD}{AB}

​    

⇒0.27=  \frac{h}{x+10}

 

⇒ (0.27) (x + 10) = h  

substituting x = \sqrt{3h} obtained from equation (i) in equation (ii)  we get  

0.27 (  

+ 10)  = h  

⇒0.27×10=h−0.27×  \sqrt{3h}

​  

 ⇒ h (1 - 0.27  ×  3  )  = 2.7

⇒ h (1 - 0.46 )  = 2 . 7  

⇒h=  0.54

/2.7

​    = 5  

Hence  , the height  of the mountains is 5 km

inshallah, iT WILL HELP YOU!!

Answered by SarcasticL0ve
16

Reference of image is shown in diagram

\setlength{\unitlength}{1.6 cm}\begin{picture}(6,2)\linethickness{0.4mm}\put(8,1){\line(1,0){5}}\put(8,1){\line(0,2){2}}\qbezier(10.5,1)(10,1.5)(8,3)\qbezier(13,1)(11.1,1.6)(8,3)\put(7.2,2){\sf{\large{h km}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\qbezier(9.8,1)(9.7,1.25)(10,1.4)\qbezier(12,1)(11.7,1.1)(11.9,1.4)\put(9.4,1.2){\sf\large{30^{\circ}$}}\put(11.3,1.2){\sf\large{15^{\circ}$}}\put(13,.7){\sf\large D}\put(7.9,3.1){\sf\large B}\put(10.4,.7){\sf \large C}\put(7.9,.7){\sf\large A}\put(8.2,0.8){\vector(1,0){0.7}}\put(9,.7){\sf\large x km}\put(10.3,0.8){\vector( - 1,0){0.7}}\put(10.7,0.8){\vector(1,0){0.5}}\put(11.4,.7){\sf\large 10 km}\put(12.8,0.8){\vector( - 1,0){0.5}}\end{picture}

Here,

  • Let AB be the mountain of height h km
  • Let C be a point at a distance of x km
  • Let D be a point at s distance of 10 km
  • Angle of elevation of the top at C is 30°
  • Angle of elevation at D is of 15°

⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{\underline{\sf{\bigstar\;In\;\triangle\;CAB,}}}\\ \\

 \qquad\qquad\sf tan\;30^\circ = \dfrac{AB}{AC}\\ \\

\qquad\quad:\implies\sf \dfrac{1}{ \sqrt{3}} = \dfrac{h}{x}\\ \\

\qquad\quad:\implies\bf x = \sqrt{3} h\qquad\qquad\bigg\lgroup\bf eq.\;(1) \bigg\rgroup\\ \\

{\underline{\sf{\bigstar\;Now,\;In\;\triangle\;CAB,}}}\\ \\

\qquad\qquad\sf tan\;15^\circ = \dfrac{AB}{AD}\\ \\

\quad\quad:\implies\sf 0.27 = \dfrac{h}{x + 10}\\ \\

\quad:\implies\bf (0.27)(x + 10) = h\qquad\qquad\bigg\lgroup\bf eq.\;(2) \bigg\rgroup\\ \\

⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀☯ Substituting x = \bf \sqrt{3}h obtained from eq. (1) in eq. (2), we get \\ \\

 \qquad\qquad\sf 0.27( \sqrt{3}h + 10) = h\\ \\

:\implies\sf 0.27 \times 10 = h - 0.27 \times \sqrt{3} h\\ \\

\quad:\implies\sf h(1 - 0.27 \times \sqrt{3}) = 2.7\\ \\

\qquad \: :\implies\sf h(1 - 0.46) = 2.7\\ \\

\qquad \: \quad:\implies\sf 0.54 h = 2.7\\ \\

\qquad\quad \:  \: :\implies\sf h = \cancel{ \dfrac{2.7}{0.54}}\\ \\

\qquad\qquad:\implies{\boxed{\frak{\pink{h = 5}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;the\;height\;of\;the\; Mountain\;is\; \bf{5\;km}.}}}

Similar questions