Determine the integer whose product with (-1) is (-220)
Answers
Answer:
Brainiest me
Step-by-step explanation:
n^2-15n-27=n(n-15)-27
We know that product will be positive as n is a positive integer.
So,
n(n-15)-27>0 or =0
n can't be 3 digit number because the greatest 3 digit number is 999 and if we multiply its digits then we get 9×9×9=729
But n(n-15)-27 >729{always}
So n will be any 2 digit number.
Now, the largest 2 digits no.=99
So maximum product =9×9=81
So,
n(n-15)-27<81 or =81
Or,n(n-15)<81 +27
Or,n(n-15)<108 or=108
Or,n<20 or=20
Also,n>15 because if it will be less than 15 then the product will be negative.
So,n can be 16,17,18 ,19
Now, if n=16 then n(n-15)-27=16×1-27=-11[not possible]
If n=17,then n(n-15)-27=17×2-27=34-27=7=1×7[possible]
If n=18,then n(n-15)-27=18×3-27=27 not equal to 1×8 so [not possible]
If n=19,then n(n-15)-27=19×4-27=49 is not equal to 1×9 [not possible]
So, only possible no.=17
So answer =17