Math, asked by sharanyaa07, 6 months ago

determine the last 3 digits of the no. 7^999​

Answers

Answered by bhavinsundar
2

Answer:

7≡7(mod10)  

72≡9(mod10)  

73≡3(mod10)  

74≡1(mod10)  

75≡7(mod10)  

Thus, the last digit of the powers of  7  follows a sequence of period  4 .

{7,9,3,1,7,9,3,1,7,9,3,1,⋯}  

How much does  999  differ from a multiple of  4 ?

999=249×4+3  

Hence, the last digit of  7999  is the same as the last digit of  73 .

7999≡3(mod10)  

Maybe you want the sum of the last two digits? In that case, you have to obtain the congruences with respect to  100  as the modulus.

7≡7(mod100)  

72≡49(mod100)  

73≡43(mod100)  

74≡1(mod100)  

75≡7(mod100)  

Amazing! The last two digits of the powers of  7  also follow a sequence of period  4 .

{7,49,43,1,7,49,43,1,7,49,43,1,⋯}  

The last two digits of  7999  are the same as those of  73 .

7999≡43(mod100)  

The sum of the last two digits of  7999  is  7 .

Perhaps you were looking for the last three digits? This makes our task more complicated. Develop a sequence with  1000  as the modulus.

Step-by-step explanation:

7≡7(mod1000)  

72≡49(mod1000)  

73≡343(mod1000)  

74≡401(mod1000)  

75≡807(mod1000)  

76≡649(mod1000)  

77≡543(mod1000)  

78≡801(mod1000)  

79≡607(mod1000)  

710≡249(mod1000)  

710≡249(mod1000)  

711≡743(mod1000)  

712≡201(mod1000)  

713≡407(mod1000)  

714≡849(mod1000)  

715≡943(mod1000)  

710≡249(mod1000)  

716≡601(mod1000)  

717≡207(mod1000)  

718≡449(mod1000)  

719≡143(mod1000)  

720≡1(mod1000)  

Finally. This means that the last three digits of the powers of  7  follow a  20 -periodic sequence. I am not going to write that here.

999=49×20+19  

The last three digits of  7999  are the same as those of  719 .

7999≡143(mod1000)  

The sum would then be  8 .

You can determine any number of digits of the powers of  7  as long as you are willing to put in the effort. There are no shortcuts easier than the use of congruences.

For reference,  7999  is this mammoth number.

7999=  

17903666285224547401536497605467631516642643929728373878049928  

67887100851881973091892126272205021725188551655993594201095511  

84270667518603945415483244077971185735873209516005692320512756  

90367373674002100585186524013929659039094717603842178648769418  

16548944124064201177382408824402708461241943427461587509767417  

35780984509626217985910345077871694079949357039393561781987332  

21219196928282686583564440839171715976623187961060015650683284  

11307572689853026350721431864080548759856387602032056390488560  

84715336603561339170648071516414717293039886163472002338365253  

64162333925903115907096918153727348192149342762478373037309722  

27562220042754617035588433714671944461188299083896788778820914  

47397535224429623316520866911789628001652020897779348090206708  

64378594401803116332437523742167528825742898092146260440455132  

580195901471547040581591601104468657143

Similar questions