Math, asked by SwAgQuEeN86, 16 hours ago

Determine the location of all critical points and determine the nature for the function f(x)=In(x^2+1)_x.​

Answers

Answered by King412
18

 \\ \bigstar \:  \large \underline  \purple{ \rm{Given :- }} \\

  • \sf \: f(x) = In( {x}^{2}  + 1) - x

 \\ \bigstar \:  \:  \large \underline  \purple{ \rm{To \:  find :- }} \\

  • The location of all critical points and their nature of the function.

 \\  \bigstar \:  \: \large \underline  \purple{ \rm{Solution :- }} \\

In this question, We have to find the location of all critical points and their nature of the function.

So, for this we have to put f'(x) = 0

Here,

 \\  \sf \:  \: f'(x)  =  \frac{d}{dx} [In( {x}^{2}   + 1) - x] \\

As we know,

 \\   \:  \:  \:  \:  \:  \:  \:  \: \sf \:   \:   \frac{d}{dx} [In( {x})  ] =  \frac{1}{x}  \: and \:  \frac{d}{dx} ( {x}^{n}) = n {x}^{n - 1}  \\

So,

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \:   \sf \frac{2x}{ {x}^{2}  + 1}  - 1 \\

Now ,to find critical points let's put f'(x)=0

Therefore,

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \qquad \:   \sf \frac{2x}{ {x}^{2}  + 1}  - 1  = 0\\

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \:   \ \sf \frac{2x}{ {x}^{2}  + 1}    = 1\\

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \:   \ \sf {2x}   = 1( {x}^{2}  + 1)\\

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \:   \ \sf {2x}   = ( {x}^{2}  + 1)\\

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \:   \ \sf     {x}^{2}   - 2x + 1 = 0\\

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \:   \ \sf      {(x - 1)}^{2}  = 0\\

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:   \ \sf  \:  \: \dots \:  \:   because \:  \:  {a}^{2}  - 2ab  +  {b}^{2} =  {(a - b)}^{2}   \\

Therefore ,

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \:   \ \sf      {x}  = 1\\

So, at x = 1 we get critical point and when x = 1 ,

  \\ \implies\sf \: f(1) = In( {1}^{2}  + 1) - 1 \\

  \\ \implies\sf \: f(1) = In( {1}+ 1) - 1 \\

  \\ \implies\sf \: f(1) = In2- 1 \\

Therefore, critical point is ( 1, In2-1)

Now,

 \\  \sf \:  \: f''(x) =  \frac{d}{dx}  \bigg( \frac{2x}{ {x}^{2} + 1 }  \bigg)

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =   \frac{2 -  {2x}^{2} }{( {x}^{2} + 1)^{2}  }

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:   \ \sf  \:  \: \dots \:  \:   because \:  \:   \:  \:  \frac{d}{dx}    \bigg( \frac{u}{v}   \bigg) =  \frac{(v.u' -u.v')}{ {v}^{2} } \: and \:  \frac{d}{dx}  = 0 \\

Now,

 \\  \sf \:  \: f''(1) =  \frac{(2 - 2)}{ {(2)}^{2} }   \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{0}{4 }    = 0\\

As f''(1) = 0 So, we will get inflection point x = 1. That is there is no local Maxima and local minima.

Similar questions