Physics, asked by anamikaku5417, 2 days ago

Determine the mass density, specific volume and specific weight of a liquid whose specific gravity 0.85.

Answers

Answered by Shazia055
11

The specific gravity of the liquid is given as 0.85.

The formula to find specific gravity

\[ = \frac{{Density\,of\,Liquid\,given\,(\rho )}}{{Density\,of\,Water}}\]

% MathType!Translator!2!1!AMS LaTeX.tdl!AMSLaTeX!\[S.G = \frac{{Density\,of\,Liquid\,given\,(\rho )}}{{Density\,of\,Water}}\]% MathType!End!2!1!The formula for the specific volume of liquid% MathType!Translator!2!1!AMS LaTeX.tdl!AMSLaTeX!=\[\frac{{Fluid\,volume}}{{Fluid\,mass}}\]% MathType!End!2!1!\[ = \,\frac{{Fluid\,volume}}{{Fluid\,mass}}\]

The formula for the  specific weight of liquid=% MathType!Translator!2!1!AMS LaTeX.tdl!AMSLaTeX!\[density\,of\,the\,given\,liquid\,(\rho )\, \times \,g\]% MathType!End!2!1!\[density\,of\,the\,given\,liquid\,(\rho )\, \times \,g\]

Explanation: The specific gravity of the given liquid is 0.85 so,

% MathType!Translator!2!1!AMS LaTeX.tdl!AMSLaTeX!\[S.G = \frac{{Density\,of\,Liquid\,given\,(\rho )}}{{Density\,of\,Water}}\]% MathType!End!2!1!\[S.G = \frac{{Density\,of\,Liquid\,given\,(\rho )}}{{Density\,of\,Water}}\]

% MathType!Translator!2!1!AMS LaTeX.tdl!AMSLaTeX!\[\begin{gathered}  \rho  = \,S.G.\, \times \,1000 \hfill \\  \rho  = \,0.85\, \times \,1000 \hfill \\  \rho  = \,850\,kg/{m^3} \hfill \\ \end{gathered} \]% MathType!End!2!1!\[\begin{gathered}  \rho  = \,S.G.\, \times \,1000 \hfill \\  \rho  = \,0.85\, \times \,1000 \hfill \\  \rho  = \,850\,kg/{m^3} \hfill \\ \end{gathered} \]

% MathType!Translator!2!1!AMS LaTeX.tdl!AMSLaTeX!\[Mass\,density\,of\,given\,liquid\, = \,850\,kg/{m^3}\]% MathType!End!2!1!\[\begin{gathered}  Mass\,density\,of\,given\,liquid\, = \,850\,kg/{m^3} \hfill \\  Specific\,volume\, = \,\frac{{Fluid\,volume}}{{Fluid\,mass}} \hfill \\  Specific\,volume = \,\frac{1}{\rho } \hfill \\   = \frac{1}{{850}} = {\text{ }}1.1760{\text{ }} \times {\text{ }}{10^{-3}}{m^3}/Kg \hfill \\ \end{gathered} \]

% MathType!Translator!2!1!AMS LaTeX.tdl!AMSLaTeX!\[\begin{gathered}  Specific\,volume\, = \,\frac{{Fluid\,volume}}{{Fluid\,mass}} \hfill \\  Specific\,volume = \,\frac{1}{\rho } \hfill \\   = \frac{1}{{850}} = {\text{ }}1.1760{\text{ }} \times {\text{ }}{10^{-3}}{m^3}/Kg \hfill \\  Specific\,volume\,of\,liquid\, = 1.1760{\text{ }} \times {\text{ }}{10^{-3}}{m^3}/Kg \hfill \\ \end{gathered} \]% MathType!End!2!1!\[\begin{gathered}  Specific\,volume\,of\,liquid\, = 1.1760{\text{ }} \times {\text{ }}{10^{-3}}{m^3}/Kg \hfill \\  Specific\,weight = \,density\,of\,the\,given\,liquid\,(\rho )\, \times \,g \hfill \\  Specific\,weight = \rho  \times g \hfill \\  Specific\,weight = 850 \times 9.81 \hfill \\ \end{gathered} \]

% MathType!Translator!2!1!AMS LaTeX.tdl!AMSLaTeX!\[\begin{gathered}  Specific\,weight = \,density\,of\,the\,given\,liquid\,(\rho )\, \times \,g \hfill \\  Specific\,weight = \rho  \times g \hfill \\  Specific\,weight = 850 \times 9.81 \hfill \\  Specific\,weight = 8338.5N/{m^3} \hfill \\ \end{gathered} \]% MathType!End!2!1!\[Specific\,weight = 8338.5N/{m^3}\]

So, the specific weight of the given liquid will be:

\[8338.5N/{m^3}\]

Similar questions