Determine the maximum and minimum
OF Function F(x, y) = x² + y² + 6x +12
Answers
Answered by
0
\begin{lgathered}{x}^{2} + {y}^{2} + 6x + 12 \\ = (x + 3) {}^{2} - 9 + {y}^{2} + 12 \\ = (x + 3) {}^{2} + {y}^{2} + 3 \\ now \: \: minimum \: value \: \\ of \: perfec t\: square \:is \: zero \: \: \\ = 0 + 0 + 3 \\ = 3\end{lgathered}
x
2
+y
2
+6x+12
=(x+3)
2
−9+y
2
+12
=(x+3)
2
+y
2
+3
nowminimumvalue
ofperfectsquareiszero
=0+0+3
=3
min value =3
mark as brainliest if helped
Similar questions