Determine the maximum and minimum values of the functions f(x) = 2x³ - 21x² + 36x - 20
Answers
Answered by
11
Let y = f (x) = 2 x³ + 3 x² - 36 x + 1
f ' (x) = 2(3x²) + 3 (2x) - 36 (1) + 0
f ' (x) = 6x² + 6x - 36
set f ' (x) = 0
6x² + 6x - 36 = 0
÷ by 6 => x² + x - 6
(x - 2) (x + 3) = 0
x - 2 = 0 x + 3 = 0
x = 2 x = - 3
f ' (x) = 6x² + 6x - 36
f '' (x) = 6 (2x) + 6(1) - 0
f '' (x) = 12x + 6
Put x = 2
f '' (2) = 12(2) + 6
= 24 + 6
f '' (2) = 30 >0 Minimum
To find the minimum value let us apply x = 2 in the original function
f (2) = 2 (2)³ + 3 (2)² - 36 (2) + 1
= 2(8) + 3(4) - 72 + 1
= 16 + 12 - 72 + 1
= 29 - 72
= -43
Put x = -3
f '' (-3) = 12(-3) + 6
= -36 + 6
f '' (-3) = -30 >0 Maximum
To find the maximum value let us apply x = -3 in the original function
f (-3) = 2 (-3)³ + 3 (-3)² - 36 (-3) + 1
= 2(-27) + 3(9) + 108 + 1
= -54 + 27 + 109
= -54 + 136
= 82
f ' (x) = 2(3x²) + 3 (2x) - 36 (1) + 0
f ' (x) = 6x² + 6x - 36
set f ' (x) = 0
6x² + 6x - 36 = 0
÷ by 6 => x² + x - 6
(x - 2) (x + 3) = 0
x - 2 = 0 x + 3 = 0
x = 2 x = - 3
f ' (x) = 6x² + 6x - 36
f '' (x) = 6 (2x) + 6(1) - 0
f '' (x) = 12x + 6
Put x = 2
f '' (2) = 12(2) + 6
= 24 + 6
f '' (2) = 30 >0 Minimum
To find the minimum value let us apply x = 2 in the original function
f (2) = 2 (2)³ + 3 (2)² - 36 (2) + 1
= 2(8) + 3(4) - 72 + 1
= 16 + 12 - 72 + 1
= 29 - 72
= -43
Put x = -3
f '' (-3) = 12(-3) + 6
= -36 + 6
f '' (-3) = -30 >0 Maximum
To find the maximum value let us apply x = -3 in the original function
f (-3) = 2 (-3)³ + 3 (-3)² - 36 (-3) + 1
= 2(-27) + 3(9) + 108 + 1
= -54 + 27 + 109
= -54 + 136
= 82
Answered by
1
Answer:
Step-by-step explanation:
f(x) = 2x³ - 21x² + 36x - 20
f'(x) = 6x² - 42x + 36
put f'(x) = 0
=> 6x² - 42x + 36 = 0
=> x² - 7x + 6 = 0
=> x² - 6x - x + 6 = 0
=> x(x - 6) - 1(x - 6) =0
=> (x - 1)(x - 6) = 0
x = 1 or x = 6
f''(x) = 12x - 42
f''(1) = 12 - 42 = -30 -ve hence maxima
f(1) = 2 -21 + 36 - 20 = -3
f''(6) = 12*6 - 42 = +30 +ve hence minima
f(6) = 2(216) -21(36) + 36(6) - 20 = -128
Minimum Vale = -128 at x = 6
Maximum Value = -3 at x = 1
Similar questions