Physics, asked by poojithapooji1928, 1 day ago

determine the moment of inertia about the centroidal axis of the area shown below. ​

Attachments:

Answers

Answered by kdshubham18
0

Answer:

From the figure,

The length

A

B

and

E

F

is;

A

B

=

E

F

=

2

i

n

The length

D

C

and

H

G

is;

D

C

=

H

G

=

2

i

n

The length

A

D

and

E

H

is;

A

D

=

E

H

=

4

i

n

The length

D

G

and

I

J

is;

D

G

=

I

J

=

10

i

n

The length

C

H

is;

C

H

=

6

i

n

The length

D

I

and

G

J

is;

D

I

=

G

J

=

2

i

n

Find the area of rectangle 1.

A

1

=

A

B

×

A

D

=

2

i

n

×

4

i

n

=

8

i

n

2

Both rectangles 1 and 2 are geometrically similar. So, the area of rectangle 2 will be equal to the area of rectangle 1.

A

1

=

A

2

=

8

i

n

2

Find the area of rectangle 3.

A

3

=

D

G

×

D

I

=

10

i

n

×

2

i

n

=

20

i

n

2

Find the centroid of the composite area from the base along

y

-axis.

¯¯¯

y

=

A

1

y

1

+

A

2

y

2

+

A

3

y

3

A

1

+

A

2

+

A

3

¯¯¯

y

=

A

1

(

D

I

+

A

D

2

)

+

A

2

(

G

J

+

E

H

2

)

+

A

3

(

D

I

2

)

A

1

+

A

2

+

A

3

.

.

.

(

1

)

Substitute the given value in equation (1).

¯¯¯

y

=

(

8

i

n

2

)

(

2

i

n

+

4

i

n

2

)

+

(

8

i

n

2

)

(

2

i

n

+

4

i

n

2

)

+

(

20

i

n

2

)

(

2

i

n

2

)

8

i

n

2

+

8

i

n

2

+

20

i

n

2

=

(

8

i

n

2

)

(

4

i

n

)

+

(

8

i

n

2

)

(

4

i

n

)

+

(

20

i

n

2

)

(

1

i

n

)

36

i

n

2

2.3

i

n

Find the moment of inertia of rectangle 1 along the centroidal axis by using the parallel axis theorem.

I

1

x

=

D

C

×

A

D

3

12

+

A

1

(

(

D

I

+

A

D

2

)

¯¯¯

y

)

2

=

(

2

i

n

)

×

(

4

i

n

)

3

12

+

(

8

i

n

2

)

(

(

2

i

n

+

4

i

n

2

)

2

.3

i

n

)

2

33.8

i

n

4

Find the moment of inertia of rectangle 2 along the centroidal axis by using the parallel axis theorem.

I

2

x

=

H

G

×

E

H

3

12

+

A

2

(

(

G

J

+

E

H

2

)

¯¯¯

y

)

2

=

(

2

i

n

)

×

(

4

i

n

)

3

12

+

(

8

i

n

2

)

(

(

2

i

n

+

4

i

n

2

)

2

.3

i

n

)

2

33.8

i

n

4

Find the moment of inertia of rectangle 3 along the centroidal axis by using the parallel axis theorem.

I

3

x

=

I

J

×

D

I

3

12

+

A

3

(

¯¯¯

y

D

I

2

)

2

=

(

10

i

n

)

×

(

2

i

n

)

3

12

+

(

20

i

n

2

)

(

2

.3

i

n

2

i

n

2

)

2

40.5

i

n

4

Find the moment of inertia of the composite area about the centroidal axis.

I

X

X

=

I

1

x

+

I

2

x

+

I

3

x

=

33.8

i

n

4

+

33.8

i

n

4

+

40.5

i

n

4

=

108.1

i

n

4

So, the moment of inertia of the composite area is

108.1

i

n

4

.

Similar questions