Math, asked by vengeesh15, 11 months ago

determine the nature of roots (b + c)x2 - (a + b + c) x + a = 0​

Answers

Answered by rishabh1894041
4

Step-by-step explanation:

Given \: it \\  {(b + c)} {x}^{2}  - (a + b)x + a = 0 \\  \\ To \: determine \: nature \: of \: roots \:,  \: we \:  \\ find \: out \:  \:  \:  \: D =  {B}^{2}  - 4AC \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  ( {a + b)}^{2}  - 4a(b + c) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  {a}^{2}  +  {b}^{2}   + 2ab - 4ab - 4ac \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  {a}^{2}  +  {b}^{2}  - 2ab  - 4ac \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = ( {a - b)}^{2}  - 4ac \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = D > 0 \\  \\ Hence \: roots \: are \: rational \:, distinct. \\  \\ Hope \: it \: wil \: help \: you..

Similar questions