Math, asked by jananimurgan, 1 month ago

determine the nature of the quadratic equation 9a^2b^2x^2 - 24abcdx + 16c^2d^2​

Answers

Answered by amansharma264
12

EXPLANATION.

Quadratic equation.

⇒ 9a²b²x² - 24abcdx + 16c²d² = 0.

As we know that,

⇒ D = Discriminant Or b² - 4ac.

⇒ D = (-24abcd)² - 4(9a²b²)(16c²d²).

⇒ D = 576a²b²c²d² - 576a²b²c²d².

⇒ D = 0.

Nature of roots are real and equal : D = 0.

                                                                                                                     

MORE INFORMATION.

Nature of roots of the quadratic expression.

(1) = Real and unequal, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal Or complex conjugate.

Answered by realanshuu
7

Dear Student,

• Given :

Quadratic Equation = 9a²2b²2x² - 24abcdx + 16c²2d²

• To Find :

To Determine the nature of the quadratic equation.

✪ Explanation :

➠ 9a²b²x² - 24abcdx + 16c²d² = 0

➠ Here,

A = 9a²b²x² , B = - 24abcd , C = 16c²d²

Use the Formula : B² - 4AC

➠ (−24abc) −4 ( 9a²b² ) (16c²d² )

➠ 576 a²b²c²d² - 576 a²b²c²d²

➠ 0

∴ Discriminant=0

⇒ Hence, roots of given quadratic equation are real and equal.

Similar questions