Math, asked by susmithagudivada, 11 months ago

Determine the number of 5 digit numbers that can be formed using the digits 1, 2, 3, 4, 5, 6 that are divisible by a) 2 b) 5

Answers

Answered by amitnrw
0

Given : Digits  1, 2, 3, 4, 5, 6  and 5 Digit number Divisible by 2 & 5

To find : Determine the number of 5 digit numbers

Solution:

digits 1, 2, 3, 4, 5, 6

considering repetition of Digit

Divisible by 2  if last Digit is 2 , 4 or 6

hence 3 Ways

1st to 4th Each Digit can be  in 6 ways

Hence total possible = 6*6*6*6*3 = 3888

Divisible by 5  if last Digit is 5

hence 1 Way

1st to 4th Each Digit can be  in 6 ways

Hence total possible = 6*6*6*6*1 = 1296

if Repetition of digits not allowed

Divisible by 2

6 cases each time 1 Digit not used

1 not used  -   last digit 3 ways  2  , 4 , 6   and remaining 4 Digits in 4! ways

2  not used  -   last digit 2 ways   4 , 6   and remaining 4 Digits in 4! ways

3 not used  -   last digit 3 ways  2  , 4 , 6   and remaining 4 Digits in 4! ways

4  not used  -   last digit 2 ways   2 , 6   and remaining 4 Digits in 4! ways

5 not used  -   last digit 3 ways  2  , 4 , 6   and remaining 4 Digits in 4! ways

6  not used  -  last digit 2 ways   2 , 4   and remaining 4 Digits in 4! ways

= 3 *( 4! * 3  + 4! * 2)

= 3 * ( 120)

= 360

other way last Digits can be selected in 3 ways  ( 2 , 4 , 6)

remaining 4 Digits out of 5 Digits in ⁵P₄ = 5! = 120 ways

3 * 120 = 360  numbers

if Repetition of digits not allowed

Divisible by 5

Last Digit = 5  remaining   ⁵P₄ = 5! = 120 ways

Hence 120 numbers

Learn More:

how many different 6 digit numbers can be formed using digits in the ...

https://brainly.in/question/13738553

All possible 6 digit natural numbers are formed using the digits 1, 2 ...

https://brainly.in/question/14715605

Similar questions