Math, asked by Starz4271, 11 months ago

Determine the number of terms in the A.P. 3, 7, 11, ..., 399. Also, find its 20th term from the end.

Answers

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Number\:of\:terms=100\:terms}}}

\green{\tt{\therefore{20th\:term\:from\:the\:end=323}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies A.P= 3,7,11,.....,399 \\  \\ \red{\underline \bold{To \: Find :}} \\ \tt:\implies Number\:of\:term\:in\:this\:A.P=?\\\\ \tt:  \implies  20th \: term\:from\:the\:end= ?

• According to given question :

 \tt \circ \: First \: term = 3 \\  \\  \tt \circ \: Common \: difference = 4 \\  \\  \tt \circ \: Last \: term = 399  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  a_{n} = a + (n - 1) \times d \\  \\  \tt:  \implies 399 = 3 + (n - 1) \times 4 \\  \\ \tt:  \implies 399 - 3 = (n - 1) \times 4 \\  \\ \tt:  \implies \frac{396}{4}  = n - 1 \\  \\ \tt:  \implies n - 1 = 99 \\  \\  \green{\tt:  \implies n = 100 \: terms}

 \circ \:  \tt{First\:term\:from\:end=399} \\\\ \tt\circ\:Common\:difference=-4\\\\ \tt\circ\:Last\:term=3\\\\ \tt\circ\:n=20

 \bold{As \: we \: know \: that} \\  \tt:  \implies  a_{n} = a +( n - 1)d \\  \\  \tt:  \implies  a_{20}= 399+ (20- 1) \times  ( -4) \\  \\ \tt:  \implies a_{20} = 399 +19 \times ( - 4) \\  \\ \tt:  \implies a_{20} =399 -  \\  \\  \green{\tt:  \implies a_{20} =323} \\  \\   \green{\tt  \therefore 323\: is \: the \: 20th \: term \: from \: the \: end}

Answered by Anonymous
4

Answer:

hey

Step-by-step explanation:

3,7,11,.................,407

407= 3+(n-1)(4)    nth term = a+(n-1)d

 = 3+4n-4

 = 4n-1

 408=4n

n=408/4

n=102

Number of terms = 102

It we start from last

Then first term =407

common difference =(-4)

20th term = 407 + (20-1) (-4)

 = 407+ 19 * (-4)

 = 407 - 76  

     = 331 ans.

Similar questions