English, asked by Vijaylohiya2001, 1 year ago

Determine the permeability of magnetic material by plotting it's B-H curve and it's reading

Answers

Answered by sachin370785
5
The lag or delay of a magnetic material known commonly as Magnetic Hysteresis, relates to the magnetisation properties of a material by which it firstly becomes magnetised and then de-magnetised.


We know that the magnetic flux generated by an electromagnetic coil is the amount of magnetic field or lines of force produced within a given area and that it is more commonly called “Flux Density”. Given the symbol B with the unit of flux density being the Tesla, T.

We also know from the previous tutorials that the magnetic strength of an electromagnet depends upon the number of turns of the coil, the current flowing through the coil or the type of core material being used, and if we increase either the current or the number of turns we can increase the magnetic field strength, symbol H.

Previously, the relative permeability, symbol μr was defined as the ratio of the absolute permeability μ and the permeability of free space μo (a vacuum) and this was given as a constant. However, the relationship between the flux density, B and the magnetic field strength, H can be defined by the fact that the relative permeability, μr is not a constant but a function of the magnetic field intensity thereby giving magnetic flux density as: B = μ H.

Then the magnetic flux density in the material will be increased by a larger factor as a result of its relative permeability for the material compared to the magnetic flux density in vacuum, μoH and for an air-cored coil this relationship is given as:



So for ferromagnetic materials the ratio of flux density to field strength ( B/H ) is not constant but varies with flux density. However, for air cored coils or any non-magnetic medium core such as woods or plastics, this ratio can be considered as a constant and this constant is known as μo, the permeability of free space, ( μo = 4.π.10-7 H/m ).

By plotting values of flux density, ( B ) against the field strength, ( H ) we can produce a set of curves called Magnetisation Curves, Magnetic Hysteresis Curves or more commonly B-H Curves for each type of core material used as shown below.

Magnetisation or B-H Curve




The set of magnetisation curves, M above represents an example of the relationship between B and H for soft-iron and steel cores but every type of core material will have its own set of magnetic hysteresis curves. You may notice that the flux density increases in proportion to the field strength until it reaches a certain value were it can not increase any more becoming almost level and constant as the field strength continues to increase.

This is because there is a limit to the amount of flux density that can be generated by the core as all the domains in the iron are perfectly aligned. Any further increase will have no effect on the value of M, and the point on the graph where the flux density reaches its limit is called Magnetic Saturation also known as Saturation of the Core and in our simple example above the saturation point of the steel curve begins at about 3000 ampere-turns per metre.

Saturation occurs because as we remember from the previous Magnetism tutorial which included Weber’s theory, the random haphazard arrangement of the molecule structure within the core material changes as the tiny molecular magnets within the material become “lined-up”.

As the magnetic field strength, ( H ) increases these molecular magnets become more and more aligned until they reach perfect alignment producing maximum flux density and any increase in the magnetic field strength due to an increase in the electrical current flowing through the coil will have little or no effect.

Retentivity

Lets assume that we have an electromagnetic coil with a high field strength due to the current flowing through it, and that the ferromagnetic core material has reached its saturation point, maximum flux density. If we now open a switch and remove the magnetising current flowing through the coil we would expect the magnetic field around the coil to disap
Answered by steffis
0

The permeability of magnetic material can be seen and understood by plotting a B-H curve.

  • B refers to density of magnetic flux, or more precisely the number of magnetic bands in the material that is responsible for its strength.
  • H refers to magnetic field strength which is dependent on the material and the numeric value of windings it possesses.
  • The graph plotted between them is called a hysteresis curve and is used to check permeability (μ) and several other factors.
  • B = μ x H (product of permeability and and magnetic field strength).
  • μ = B by H. Thus the permeability can be calculated by noting down values from the graph.
Attachments:
Similar questions