determine the product of the greatest number of four digits and the greatest number of three digits using distributive property of multiplication
Answers
Step-by-step explanation:
9999×999=9989001
Step-by-step explanation:
To find : The product of the greatest 4 digit number and the greatest 3 digit number using the properties of whole number ?
Solution :
The greatest 4 digit number is 9999.
The greatest 3 digit number is 999.
The product of the greatest 4 digit number and the greatest 3 digit number
i.e. 9999\times 9999999×999
We can split, 999=1000-1
So, 9999\times (1000-1)9999×(1000−1)
Applying distributive property of whole number,
Multiplication of a whole number is distributed over the difference of the whole numbers i.e. a(b-c)=ab-aca(b−c)=ab−ac
9999\times (1000-1)=9999\times 1000-9999\times 19999×(1000−1)=9999×1000−9999×1
9999\times (1000-1)=9999000-99999999×(1000−1)=9999000−9999
9999\times (1000-1)=99890019999×(1000−1)=9989001
Therefore, The required product is 9999\times 999=99890019999×999=9989001