Math, asked by modilapalesa06, 2 months ago

determine the radius and coordinates of the centre of circles
x^2 +2x+y^2 _8y=_8​

Answers

Answered by Anonymous
25

Given Equation,

 \sf \:  {x}^{2}  + 2x +  {y}^{2}  - 8y =  - 8

We have to convert the expression into the form,

 \sf \:  {(x - a)}^{2}  +  {(y - b)}^{2}  =  {r}^{2}  -  -  -  -  -  - (1)

Here,

  • (a,b) are the coordinates of centre
  • r is the radius of circle

Adding and Subtracting 1 and 16 to the given equation,

 \dashrightarrow \sf \:(  {x}^{2}  + 2x +1)   - 1 + ({y}^{2}  - 8y + 16) - 16 =  - 8 \\  \\  \dashrightarrow \sf \: (x + 1) {}^{2}  + (y - 4) {}^{2}  - 17 =  - 8 \\  \\ \dashrightarrow \sf \: (x + 1) {}^{2}  + (y - 4) {}^{2}  =   17  - 8 \\  \\ \dashrightarrow \sf \: (x + 1) {}^{2}  + (y - 4) {}^{2} =  9 \\  \\ \dashrightarrow \sf \: (x + 1) {}^{2}  + (y - 4) {}^{2} =  {3}^{2}  -  -  -  -  -  -  - (2)

Comparing (1) and (2),

  • radius = 3 units
  • coordinates of centre = (-1,4)


Ataraxia: Nice! <3
Similar questions