Determine the range of the function .
Answers
Basic Concept Used :-
How to find the range of function :
Given :- f(x)
- 1. Put y = f(x)
- 2. Solve the equation y = f(x) to get x in terms of y, Let assume that x = g(y)
- 3. Now, Find the domain of g(y)
- 4. The values thus obtained for y is the Range of the function f(x).
Given that,
To find the range of f(x),
On cubing both sides, we get
Additional Information :-
Domain of a function f(x) is defined as set of those values of x for which f(x) is well defined.
Domain of various functions :-
How to find the range of function :
Given :- f(x)
1. Put y = f(x)
2. Solve the equation y = f(x) to get x in terms of y, Let assume that x = g(y)
3. Now, Find the domain of g(y)
4. The values thus obtained for y is the Range of the function f(x).
\large\underline{\sf{Solution-}}
Solution−
Given that,
\rm :\longmapsto\:f(x) = a \sqrt[3]{bx - c} + d:⟼f(x)=a
3
bx−c
+d
To find the range of f(x),
\rm :\longmapsto\:Let \: f(x) = y = a \sqrt[3]{bx - c} + d:⟼Letf(x)=y=a
3
bx−c
+d
\rm :\longmapsto\: y = a \sqrt[3]{bx - c} + d:⟼y=a
3
bx−c
+d
\rm :\longmapsto\: y - d= a \sqrt[3]{bx - c}:⟼y−d=a
3
bx−c
\rm :\longmapsto\: \dfrac{y - d}{a} \: = \: \sqrt[3]{bx - c}:⟼
a
y−d
=
3
bx−c
On cubing both sides, we get
\rm :\longmapsto\: {\bigg(\dfrac{y - d}{a} \bigg) }^{3} = bx - c:⟼(
a
y−d
)
3
=bx−c
\rm :\longmapsto\: {\bigg(\dfrac{y - d}{a} \bigg) }^{3} + c = bx:⟼(
a
y−d
)
3
+c=bx
\bf\implies \:x = \dfrac{ {(y - d)}^{3} }{ {ba}^{3}} + \dfrac{c}{b}⟹x=
ba
3
(y−d)
3
+
b
c
\rm :\implies\: \: y \: \in \: R \: as \: x \: is \: polynomial:⟹y∈Rasxispolynomial
\bf\implies \:Range \: of \: f(x) \: \in \: R⟹Rangeoff(x)∈R
Additional Information :-
Domain of a function f(x) is defined as set of those values of x for which f(x) is well defined.
Domain of various functions :-
\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf domain \: of \: f(x) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx & \sf R \\ \\ \sf cosx & \sf R \\ \\ \sf logx & \sf x > 0\\ \\ \sf polynomial & \sf R \\ \\ \sf cotx & \sf R - n\pi\\ \\ \sf cosecx & \sf R - n\pi\end{array}} \\ \end{gathered}\end{gathered}
f(x)
sinx
cosx
logx
polynomial
cotx
cosecx
domainoff(x)
R
R
x>0
R
R−nπ
R−nπ
I hope it will be help you