Math, asked by rajaluxmy1967, 10 months ago

determine the range of values of x that satisfy the inequality

Attachments:

Answers

Answered by hukam0685
1

Step-by-step explanation:

Given that:

\bigg | \frac{x + 3}{x}\bigg |  \geqslant  \bigg| \frac{x}{2 - x} \bigg|  \\  \\

To find: Determine the range of values of x that satisfy the inequality

Solution:

To find range of values of x,first open

Absolute value

Case1:

\frac{x + 3}{x}   \geqslant   \frac{x}{2 - x}  \\ \\ (x + 3)(2 - x) \geqslant  {x}^{2}  \\  \\ 2x -  {x}^{2}  + 6 - 3x \geqslant  {x}^{2}  \\  \\  - 2 {x}^{2}  - x + 6 \geqslant 0 \\  \\  - 2 {x}^{2}  - 4x + 3x + 6 \geqslant 0 \\  \\  - 2x(x + 2) + 3(x + 2)  \geqslant 0 \\  \\ (x + 2)( - 2x + 3) \geqslant 0 \\  \\ (x + 2) \geqslant 0 \\  \\ x \geqslant  - 2 \\\\or\\  \\  - 2x + 3 \geqslant 0 \\  \\  - 2x \geqslant  - 3 \\  \\ x \leqslant  \frac{3}{2}  \\  \\

Case2:

 \frac{x + 3}{x}   \geqslant   \frac{ - x}{2 - x}  \\ \\ (x + 3)(2 - x) \geqslant  -  {x}^{2}  \\  \\  -  {x}^{2}   + 2x + 6 - 3x \geqslant  -  {x}^{2}  \\  \\  - x + 6 \geqslant 0 \\  \\  x \geqslant  6 \\  \\

Thus,

range of values that satisfies the given inequality

 - 2 \leqslant x  < 0 \:  \: or \:  \: 0 < x \leqslant  \frac{3}{2}  \:  \: or \: x \geqslant 6 \\  \\

In interval notation

 [- 2 ,\: 0) \cup(0, \:  \frac{3}{2}]  \cup[6 \:,∞  ) \\  \\

Hope it helps you.

Similar questions