Math, asked by narendargupta9476, 9 hours ago

. Determine the range of (x ^ 2 + x + 1)/(x ^ 2 - x + 1)​

Answers

Answered by amitkumar44481
55

SolutioN :

 \tt \rightarrow \: f(x) =  \dfrac{ {x}^{2} + x + 1 }{ {x}^{2} - x + 1 }  \\ \\

 \tt \rightarrow \:   \dfrac{ Quadratic}{ Quadratic }  \:  \: form. \\ \\

 \tt \rightarrow \:   \dfrac{ {x}^{2} + 2x  - x+ 1 }{ {x}^{2} - x + 1 } \\  \\

 \tt \rightarrow \:   \dfrac{ {x}^{2} - x+ 1 }{ {x}^{2} - x + 1 }   +  \frac{2x}{ {x}^{2} - x + 1 }  \\  \\

 \tt \rightarrow \: 1   +  \frac{2x}{ {x}^{2} - x + 1 }  \\  \\

 \tt \rightarrow \: 1   +  \frac{2}{ x-  1  +   \frac{1}{x} }  \\  \\

 \tt \rightarrow \: 1   +  \frac{2}{ x +   \frac{1}{x} - 1 }  \\  \\

Now, Apply AM and GM.

 \tt \rightarrow \:  AM \geq GM \\  \\

 \tt \rightarrow \:   \frac{x +  \dfrac{1}{x} }{2} \geq \sqrt{x .\dfrac{1}{x} }  \\  \\

 \tt \rightarrow \:   x +  \dfrac{1}{x} \geq 2.\\  \\

Now,

 \tt \rightarrow \: 1   +  \frac{2}{  [-2 , 2 ]- 1 }  \\  \\

 \tt \rightarrow \: 1   +  \frac{2}{  [-3 , 1 ] }  \\  \\

 \tt \rightarrow \: 1   +    [- \frac{2}{3}  , 2] \\  \\

 \tt \rightarrow \:     [\frac{1}{3}  , 3] \\  \\

Therefore, the range of function f(x) is [ 1/3 , 3 ]

Answered by kamalhajare543
67

Answer:

 \sf \: Let \:  y  = \:  \big \: \frac{x {}^{2} - x + 1 }{x {}^{2}  + x + 1}

 \sf \:  \big ⇒yx {}^{2}  + yx + y  \: = \:  x {}^{2}  - x + 1

 \sf⇒ ( x - 1)x {}^{2}  + (y + 1)x + (y - 1) = 0

 \sf \: If \:  x \:∈ \: R,  \: then 

 \sf \: Discriminent \:  \geqslant 0

 \sf⇒(y + 1) {}^{2}  - 4(y - 1) {}^{2}  \geqslant 0

 \sf⇒ \: 3y {}^{2}  - 10y - 3 \geqslant 0

 \sf⇒ \: 3y {}^{2}  - 10y + 3 \leqslant 0

 \sf⇒ \: (3y - 1) \: (y - 3) \leqslant 3

 \sf \: Therefore \: range = [\frac{1}{3}, 3]

Similar questions