Physics, asked by sshhhahanaha, 2 months ago

Determine the range over which the output voltage can be varied in LM 317, if R1=2401 and R2 = 5K potentiometer.
Assume ladj = 50PA.​

Answers

Answered by sourasghotekar123
0

1. 1K\Omega=1000\Omega

2. 1pA=10^{-12} A

3. The output voltage is calculated using the formula,

V_{out} = 1.25 \left [ 1+\frac{R_{2}}{R_{1}} \right ]+ I_{adj}\times R_{2}

Given data,

For LM317,

R_{1} =2401\Omega

R_{2} =5K\Omega

Assume, I_{adj} =50pA

1. when R_{2} =0\Omega,

V_{out} = 1.25 \left [ 1+\frac{0}{R_{1}} \right ]+ I_{adj}\times 0=1.25+0=1.25V

2. when R_{2} =5K\Omega,

V_{out} = 1.25 \left [ 1+\frac{5\times10^{3} }{2401} \right ]+ 50\times 10^{-12} \times 5\times 10^{3}V_{out} =1.25\left [ 1+2.082 \right ]+250\times 10^{-9}

V_{out} = 3.8525+250\times 10^{-9} =3.85250025\approx3.85V

Hence, the range is 1.25V to 3.85 V.

Answered by tiwariakdi
0

1.

1kΩ = 1000Ω

2. 1pA =  {10}^{ - 12} A

3. The output voltage is calculated using the formula,

Vout=1.25[1+ \frac{R2}{R1} ]+Iadj×R2</p><p>

Given data,

For LM 317,

R1 = 2401Ω

R2 = 5kΩ

Assume, I adj = 50pA

1. when , R2 = 0Ω

v \: out \:  = 1.25(1 +  \frac{0}{R1} ) + Iadj \times 0 = 1.25

2. when , R2 = 5kΩ

Vout  = 1.25(1 +  \frac{5 \times  {10}^{3} }{2401}) + 50 \times  {10}^{ - 12}   \times 5 \times  {10}^{3}  = 3.85V

Hence, the range is 1.25V to 3.85V

Similar questions