Math, asked by jatinkanaujiya779, 2 months ago

Determine the ratio in which the line 3x + y – 9 = 0 divides the segment joining the points (1, 3) and (2, 7).​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

↝Let us assume given coordinates as A and B.

So,

↝Coordinates of A be (1, 3)

and

↝Coordinates of B be (2, 7).

Let us further assume that the line 3x + y - 9 = 0 divides the line segment joining the points A and B at P in the ratio k : 1.

↝Let coordinates of P be (x, y).

We know,

Section Formula which states that

The coordinates of point C (x, y) which divides the line segment joining the points A and B in the ratio m : n internally is given by

\bf \:( x, y) =  \bigg(\dfrac{mx_2  +  nx_1}{m  +  n}  , \dfrac{my_2  +  ny_1}{m  +  n} \bigg)

Here,

\rm :\longmapsto\:x_1 =1 ,y_1 = 3,x_2=2 ,y_2=7 ,m =k ,n =1

↝ So, on substituting the values in above formula, we get

\rm :\longmapsto\:\bf \:( x, y) =  \bigg(\dfrac{2k + 1}{k  +  1}  , \dfrac{7k + 3}{k + 1} \bigg)

↝ Hence, Coordinates of P is

\rm :\longmapsto\:\bf \:( x, y) =  \bigg(\dfrac{2k + 1}{k  +  1}  , \dfrac{7k + 3}{k + 1} \bigg)

Now,

↝ P lies on the line 3x + y - 9 = 0

\rm :\longmapsto\:3\bigg(\dfrac{2k + 1}{k + 1} \bigg) + \bigg(\dfrac{7k + 3}{k + 1} \bigg) = 9

\rm :\longmapsto\:\bigg(\dfrac{6k + 3}{k + 1} \bigg) + \bigg(\dfrac{7k + 3}{k + 1} \bigg) = 9

\rm :\longmapsto\:\dfrac{6k + 3 + 7k + 3}{k + 1}  = 9

\rm :\longmapsto\:\dfrac{13k + 6}{k + 1}  = 9

\rm :\longmapsto\:13k + 6 = 9(k + 1)

\rm :\longmapsto\:13k + 6 = 9k +9

\rm :\longmapsto\:13k  - 9k = 9 - 6

\rm :\longmapsto\:4k = 3

\rm :\implies\:k = \dfrac{3}{4}

Hence, Required ratio is 3 : 4

Additional Information :-

1. Distance Formula :-

{\underline{\boxed{\rm{\quad Distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad}}}}

2. Midpoint Formula :-

{\underline{\boxed{\rm{\quad \dfrac{x_1 + x_2}{2} \; ,\; \dfrac{y_1 + y_2}{2} \quad}}}}

3. Centroid of a triangle

{\underline{\boxed{\rm{\quad \dfrac{x_1 + x_2 + x_3}{3} \; ,\; \dfrac{y_1 + y_2 + y_3}{3} \quad}}}}

4. Area of triangle

\rm\ Area =\dfrac{1}{2}  [x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]

5. Condition for 3 points to be collinear

 \boxed{\rm \:  x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) = 0}

Attachments:
Similar questions