Math, asked by dipo7436, 1 year ago

Determine the ratio in which the point p(m,6) divides the join of a(-4,3)and b(2,8) .also find the value of m

Answers

Answered by himanshi2758
260
click on thanks for the answer and I hope it will be helpful for you
Attachments:
Answered by mysticd
108

Answer:

\red {Value \:of \:m }\green {=\frac{-2}{5}}

Step-by-step explanation:

 Let \: k:1 \:be \: required \:ratio

 If \:the \:ratio \: in \: which \:P(m,6)\:divides \\joining \: points \: A(-4,3) = (x_{1},y_{1}) ,\:and \\B(2,8) = (x_{2},y_{2})\:is \:k:1, \: then \:the \\coordinates \:of \:the \:point \:P\:are

\pink { \left(\frac{kx_{2}+x_{1}}{k+1},\:\frac{ky_{2}+y_{1}}{k+1}\right)}

 P(m,6) = \left(\frac{k\times 2+(-4)}{k+1},\:\frac{k\times 8+3}{k+1}\right)}

 = \left(\frac{2k-4}{k+1},\:\frac{8k+3}{k+1}\right)}

 m = \frac{2k-4}{k+1}\:---(1)

 6 =\frac{8k+3}{k+1}

\implies 6(k+1) = 8k+3

\implies 6k + 6 = 8k + 3

 \implies 6 - 3 = 8k - 6k

 \implies 3 = 2k

 \implies k = \frac{3}{2} \:---(2)

 Substitute \: value \: of \: k \: in \: equation \:(1),\\we \:get

 m =  \frac{2\frac{3}{2}-4}{\frac{3}{2}+1}

 = \frac{3-4}{\frac{3+2}{2}}\\=\frac{-1}{\frac{5}{2}}\\=\frac{-2}{5}

Therefore.,

\red {Value \:of \:m }\green {=\frac{-2}{5}}

•••♪

Similar questions