Math, asked by ShantiJoshi, 8 months ago

Determine the roots of the equation 2/x^2 - 5/x + 2 = 0 *​

Answers

Answered by maheshbabu748
1

Answer:

2,1/2

Step-by-step explanation:

aiialosjalapos!pad srts yrs yrscut s trsutrsy5su5rsc

Answered by Anonymous
27

 \huge \mathfrak \red{answer}

 \huge \bf{ \boxed{ \underline{ \blue{ \tt{x = 2 ,\:  \:  \:  \dfrac{1}{2} \: }}}}}

__________________________________________

 \sf \huge \underline \pink{ \implies \: Question}

Determine the roots of the equation

 \rm{ \dfrac{2}{ {x}^{2} } -  \dfrac{5}{x} + 2 = 0}

___________________________________________

 \sf \huge \underline \green{ \implies \: Answer}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \red{ \implies \:  \dfrac{2}{ {x}^{2} } -  \dfrac{5}{x} + 2 = 0}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \purple{ \implies \: 2 - 5x + 2 {x}^{2} = 0}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \orange{ \implies \: 2 {x}^{2} - 5x + 2 = 0}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt \pink{ \implies \: (x - 2)(2x - 1) = 0}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \blue{ \implies \:  = x = 2 \: , \:  \dfrac{1}{2}}

Similar questions